19 research outputs found

    Targeted images of KB cells using folate-conjugated gold nanoparticles

    Get PDF
    Mercaptosuccinic acid-coated gold (GM) nanoparticles were prepared and characterized by transmission electron microscopy and dynamic light scattering. Folic acid (F) was then conjugated to the GM to preferentially target oral squamous cancer (KB) cells with folate receptors expressed on their membranes and facilitate the transit of the nanoparticles across the cell membrane. Finally, a fluorescence dye (Atto) was conjugated to the nanoparticles to visualize their internalization into KB cells. After culture of the cells in a medium containing GM and folate-conjugated GM (GF), the interaction of surface-modified gold nanoparticles with KB cells was studied

    Targeting and molecular imaging of HepG2 cells using surface-functionalized gold nanoparticles

    Get PDF
    Mercaptosuccinic acid (M)-conjugated gold nanoparticles (GM) were prepared and characterized by transmission electron microscope and dynamic light scattering. M was used to improve the monodispersity and non-specific intracellular uptake of nanoparticles. Lactobionic acid (L) was subsequently conjugated to the GM to target preferentially HepG2 cells (liver cancer cells) that express asialoglycoprotein receptors (ASGPR) on their membrane surfaces and facilitate the transit of nanoparticles across the cell membrane. The mean size of lactobionic acid-conjugated gold nanoparticle (GL) was approximately 10 ± 0.2 nm. Finally, the Atto 680 dye (A6) was coupled to the nanoparticles to visualize their internalization into HepG2 cells. The interaction of surface-modified gold nanoparticles with HepG2 cells was studied after culturing cells in media containing the GM or L-conjugated GM (GL)

    Specific Intracellular Uptake of Herceptin-Conjugated CdSe/ZnS Quantum Dots into Breast Cancer Cells

    Get PDF
    Herceptin, a typical monoclonal antibody, was immobilized on the surface of CdSe/ZnS core-shell quantum dots (QDs) to enhance their specific interactions with breast cancer cells (SK-BR3). The mean size of the core-shell quantum dots (28 nm), as determined by dynamic light scattering, increased to 86 nm after herceptin immobilization. The in vitro cell culture experiment showed that the keratin forming cancer cells (KB) proliferated well in the presence of herceptin-conjugated QDs (QD-Her, 5 nmol/mL), whereas most of the breast cancer cells (SK-BR3) had died. To clarify the mechanism of cell death, the interaction of SK-BR3 cells with QD-Her was examined by confocal laser scanning microscopy. As a result, the QD-Her bound specifically to the membrane of SK-BR3, which became almost saturated after 6 hours incubation. This suggests that the growth signal of breast cancer cells is inhibited completely by the specific binding of herceptin to the Her-2 receptor of SK-BR3 membrane, resulting in cell death

    Linalool prevents oxidative stress activated protein kinases in single UVB-exposed human skin cells

    Get PDF
    Ultraviolet-B radiation (285–320 nm) elicits a number of cellular signaling elements. We investigated the preventive effect of linalool, a natural monoterpene, against UVB-induced oxidative imbalance, activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signaling in HDFa cells. We observed that linalool treatment (30 μM) prevented acute UVB-irradiation (20 mJ/cm 2) mediated loss of activities of antioxidant enzymes in HDFa cells. The comet assay results illustrate that linalool significantly prevents UVB-mediated 8-deoxy guanosine formation (oxidative DNA damage) rather than UVB-induced cyclobutane pyrimidine (CPD) formation. This might be due to its ability to prevent UVB-induced ROS formation and to restore the oxidative imbalance of cells. This has been reflected in UVB-induced overexpression of MAPK and NF-κB signaling. We observed that linalool inhibited UVB-induced phosphorylation of ERK1, JNK and p38 proteins of MAPK family. Linalool inhibited UVB-induced activation of NF-κB/p65 by activating IκBa. We further observed that UVB-induced expression of TNF-α, IL6, IL-10, MMP-2 and MMP-9 was modulated by linalool treatment in HDFa cells. Thus, linalool protects the human skin cells from the oxidative damages of UVB radiation and modulates MAPK and NF-κB signaling in HDFa cells. The present findings substantiate that linalool may act as a photoprotective agent against UVB-induced skin damages

    Enhanced Intracellular Uptake of CdTe Quantum Dots by Conjugation of Oligopeptides

    Get PDF
    Arg-Gly-Asp-Ser (RGDS), a typical membrane-permeable carrier peptide, was conjugated with mercaptoisobutyric acid-immobilized CdTe quantum dot (CTNPs) to enhance the intracellular uptake of quantum dots. Mean size of mercaptoisobutyric acidimmobilized quantum dots (37 nm) as determined by dynamic light scattering was increased up to 54 nm after RGDS immobilization. It was found, from in vitro cell culture experiment, that fibroblast (NIH 3T3) cells were well proliferated in the presence of RGDS-conjugated quantum dots (RCTNPs), and the intracellular uptake of CTNPs and RCTNPs was studied by means of ICP and fluorescence microscopy. As a result, the RCTNPs specifically bound to the membrane of NIH 3T3 cells and almost saturated after 6 hours incubation. The amount of RCTNPs uptaken by the cells was higher than that of CTNPs, demonstrating the enhancing effect of RGDS peptide conjugation on the intracellular uptake of quantum dots (QDs)

    Internalization: Acute apoptosis of breast cancer cells using Herceptin-Immobilized gold nanoparticles

    Get PDF
    Herceptin, the monoclonal antibody, was successfully immobilized on gold nanoparticles (GNPs) to improve their precise interactions with breast cancer cells (SK-BR3). The mean size of the GNPs (29 nm), as determined by dynamic light scattering, enlarged to 82 nm after herceptin immobilization. The in vitro cell culture experiment indicated that human skin cells (FB) proliferated well in the presence of herceptin-conjugated GNP (GNP-Her), while most of the breast cancer cells (SK-BR3) had died. To elucidate the mechanism of cell death, the interaction of breast cancer cells with GNP-Her was tracked by confocal laser scanning microscopy. Consequently, GNP-Her was found to be bound precisely to the membrane of the breast cancer cell, which became almost saturated after 6 hours incubation. This shows that the progression signal of SK-BR3 cells is retarded completely by the precise binding of antibody to the human epidermal growth factor receptor 2 receptor of the breast cancer cell membrane, causing cell death

    Specific Intracellular Uptake of Herceptin-Conjugated CdSe/ZnS Quantum Dots into Breast Cancer Cells

    Get PDF
    Herceptin, a typical monoclonal antibody, was immobilized on the surface of CdSe/ZnS core-shell quantum dots (QDs) to enhance their specific interactions with breast cancer cells (SK-BR3). the mean size of the core-shell quantum dots (28 nm), as determined by dynamic light scattering, increased to 86 nm after herceptin immobilization. the in vitro cell culture experiment showed that the keratin forming cancer cells (KB) proliferated well in the presence of herceptin-conjugated QDs (QD-Her, 5 nmol/mL), whereas most of the breast cancer cells (SK-BR3) had died. to clarify the mechanism of cell death, the interaction of SK-BR3 cells with QD-Her was examined by confocal laser scanning microscopy. as a result, the QD-Her bound specifically to the membrane of SK-BR3, which became almost saturated after 6 hours incubation. This suggests that the growth signal of breast cancer cells is inhibited completely by the specific binding of herceptin to the Her-2 receptor of SK-BR3 membrane, resulting in cell death
    corecore