6 research outputs found

    Inhibitory Mechanisms of Lusianthridin on Human Platelet Aggregation

    No full text
    Lusianthridin is a phenanthrene derivative isolated from Dendrobium venustum. Some phenanthrene compounds have antiplatelet aggregation activities via undefined pathways. This study aims to determine the inhibitory effects and potential mechanisms of lusianthridin on platelet aggregation. The results indicated that lusianthridin inhibited arachidonic acid, collagen, and adenosine diphosphate (ADP)-stimulated platelet aggregation (IC50 of 0.02 ± 0.001 mM, 0.14 ± 0.018 mM, and 0.22 ± 0.046 mM, respectively). Lusianthridin also increased the delaying time of arachidonic acid-stimulated and the lag time of collagen-stimulated and showed a more selective effect on the secondary wave of ADP-stimulated aggregations. Molecular docking studies revealed that lusianthridin bound to the entrance site of the cyclooxygenase-1 (COX-1) enzyme and probably the active region of the cyclooxygenase-2 (COX-2) enzyme. In addition, lusianthridin showed inhibitory effects on both COX-1 and COX-2 enzymatic activities (IC50 value of 10.81 ± 1.12 µM and 0.17 ± 1.62 µM, respectively). Furthermore, lusianthridin significantly inhibited ADP-induced suppression of cAMP formation in platelets at 0.4 mM concentration (p < 0.05). These findings suggested that possible mechanisms of lusianthridin on the antiplatelet effects might act via arachidonic acid-thromboxane and adenylate cyclase pathways

    Protective Effect of Lusianthridin on Hemin-Induced Low-Density Lipoprotein Oxidation

    No full text
    Oxidation of low-density lipoprotein (LDL) plays a crucial role in the pathogenesis of atherosclerosis. Hemin (iron (III)-protoporphyrin IX) is a degradation product of hemoglobin that can be found in thalassemia patients. Hemin is a strong oxidant that can cause LDL oxidation and contributes to atherosclerosis in thalassemia patients. Lusianthridin from Dendrobium venustrum is a phenolic compound that possesses antioxidant activity. Hence, lusianthridin could be a promising compound to be used against hemin-induced oxidative stress. The major goal of this study is to evaluate the protective effect of lusianthridin on hemin-induced low-density lipoprotein oxidation (he-oxLDL). Here, various concentrations of lusianthridin (0.25, 0.5, 1, and 2 µM) were preincubated with LDL for 30 min, then 5 µM of hemin was added to initiate the oxidation, and oxidative parameters were measured at various times of incubation (0, 1, 3, 6, 12, 24 h). Lipid peroxidation of LDL was measured by thiobarbituric reactive substance (TBARs) assay and relative electrophoretic mobility (REM). The lipid composition of LDL was analyzed by using reverse-phase HPLC. Foam cell formation with he-oxLDL in RAW 264.7 macrophage cells was detected by Oil Red O staining. The results indicated that lusianthridin could inhibit TBARs formation, decrease REM, decrease oxidized lipid products, as well as preserve the level of cholesteryl arachidonate and cholesteryl linoleate. Moreover, He-oxLDL incubated with lusianthridin for 24 h can reduce the foam cell formation in RAW 264.7 macrophage cells. Taken together, lusianthridin could be a potential agent to be used to prevent atherosclerosis in thalassemia patients

    Antiplatelet activity of deferiprone through cyclooxygenase-1 inhibition

    No full text
    Thalassemia patients are susceptible to both iron overload and thromboembolism. Deferiprone is an iron chelator that shows an antiplatelet activity and thus may alleviate platelet hyperactivation in thalassemia. Therefore, this study aimed to characterize the inhibitory effects and mechanisms of deferiprone on normal human platelets. The results illustrated that deferiprone inhibited platelet aggregation at the iron chelating concentrations (0.08–0.25 mmol/l). Deferiprone inhibited human platelet aggregation stimulated by arachidonic acid and ADP more potently than epinephrine and collagen, with the IC50 of 0.24 mmol/l and 0.25 mmol/l vs. 3.36 mmol/l and 3.73 mmol/l, respectively. Interestingly, deferiprone significantly inhibited COX-1 activity, with the IC50 of 0.33 mmol/l, and slightly increased cAMP level at the high concentration of 4 mmol/l. Moreover, the results from molecular docking showed that deferiprone interacted closely with key residues in the peroxidase active site of COX-1. These results suggested that deferiprone possessed antiplatelet activity mainly through the inhibition of COX-1 activity

    Synergistic antioxidant action of Phikud Navakot ameliorates hydrogen peroxide-induced stress in human endothelial cells

    Get PDF
    Background: Phikud Navakot (PN), a combination of nine herbs, has been used traditionally in Thai medicinal formulas to relieve circulatory disorder. The present study aimed to compare the synergistic antioxidant efficacy and toxicity of the hydroethanolic and water extracts of PN at cellular level. Methods: PN and its nine herbs were extracted with either 50% ethanol or water. All extracts were tested for in vitro antioxidant potential using standard antioxidant assays. Evaluation of cytotoxicity, genotoxicity, and intracellular reactive oxygen species were performed using human endothelial ECV304 cells. Results: Antioxidant assays in cell-free systems showed that the hydroethanolic extract of PN scavenged superoxide, hydroxyl, nitric oxide radicals, and hydrogen peroxide more effectively than its water extract. Combination indices were calculated to show that the ingredients of the hydroethanolic extract acted synergistically to exhibit antioxidant activities against all tested radicals, whereas, in the case of water extract, this effect was observed only against 2,2-diphenyl-1-picrylhydrazyl, superoxide, and hydroxyl radicals. A cell-based assay also revealed that the hydroethanolic extract concentration-dependently attenuated hydrogen peroxide-induced stress more effectively than the water extract. At the antioxidant and cytotoxic concentrations of both extracts, no genotoxicity was found. Conclusion: Our findings demonstrate that the synergistic antioxidant action of PN ameliorates endothelial stress, which may provide some clues for understanding the traditional use of PN for the treatment of circulatory disorder. Additionally, the selection of a suitable solvent for the extraction of PN herbal combination is essential for maximal efficacy and safety
    corecore