4 research outputs found

    Redox functional groups of humic substances.

    Get PDF
    A new analytical technique based on palladium (Pd) and H2 catalytic system showed significant potential as a useful method for reliably assessing redox sites in humic substances. The technique identifies redox sites as a function of their resistance to the hydrogenolysis process. The test system consists of catalytic reduction process, the measurement of electron carrying capacity, and air oxidation. The extent of hydrogenolysis, which occurs during the catalytic reduction, can be controlled by pH and the type of catalyst used in the system. Verification of the reversibility of the redox sites is also permitted due to the use of a removable catalyst that allows the test to be repeated. Eight quinone compounds and fourteen humic substance samples were examined using this technique. The tests with quinone compounds demonstrated that hydrogenolysis occurring in the pH 6.5-Pd/Al2O3 redox system effectively removed quinone moieties in all model compounds. When the system's pH was increased to 8, the extent of hydrogenolysis became less intense. Quinones with an electron withdrawing substituent were left intact. As hydrogenolysis was further compromised by removing Al2O3 from the system, quinones without substituents and quinones with adjacent electron donating functional groups also remained intact. At that point, only quinones with an electron donating substituent located far away in a separate conjugated system suffered hydrogenolysis. The humic substance samples' tests showed that six landfill leachate humic substances, which were highly aliphatic, did not have redox sites. Eight other humic substance samples were capable of shuttling electrons, even in the pH 6.5-Pd/Al2O3 redox system, which had removed their quinone redox sites. The technique showed that redox sites in humic substance samples include both nonquinone (NQ) and quinone groups. Redox sites in the NQ group were responsible for 21%--56% of the electron carrying capacity (ECC) of the samples. The technique divided redox sites in the quinone group into two subgroups. The first subgroup includes redox sites with a neighboring electron withdrawing substituent which was liable for 13%--58% of the ECC. The second subgroup contains redox sites characterized by having an adjacent electron donating substituent and were accountable for 8%--50% of ECC

    āļĻāļąāļāļĒāļ āļēāļžāļāļēāļĢāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āđāļĨāļ°āļˆāļĨāļ™āļžāļĨāļĻāļēāļŠāļ•āļĢāđŒāļ‚āļ­āļ‡āļāļēāļĢāļŦāļĄāļąāļāļĢāđˆāļ§āļĄāļĢāļ°āļŦāļ§āđˆāļēāļ‡āđ€āļĻāļĐāļ­āļēāļŦāļēāļĢāđāļĨāļ°āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāđ€āļĒāļ·āđˆāļ­āļŠāļĩāļ§āļ āļēāļžāļšāļĢāļĢāļˆāļļāļ­āļēāļŦāļēāļĢ Biochemical Methane Potential and Kinetics on Anaerobic Co-digestion of Food Waste and Cellulose-based Food Packaging Product

    No full text
    āļāļēāļĢāļĒāđˆāļ­āļĒāļŠāļĨāļēāļĒāļ āļēāļĒāđƒāļ•āđ‰āļŠāļ āļēāļ§āļ°āđ„āļĢāđ‰āļ­āļēāļāļēāļĻāđ‚āļ”āļĒāļāļēāļĢāļŦāļĄāļąāļāļĢāđˆāļ§āļĄāđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļžāļīāļŠāļđāļˆāļ™āđŒāđāļĨāđ‰āļ§āļ§āđˆāļēāđ€āļ›āđ‡āļ™āļ­āļĩāļāđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļŦāļ™āļķāđˆāļ‡āļ—āļĩāđˆāļŠāđˆāļ§āļĒāđ€āļžāļīāđˆāļĄāļ›āļĢāļīāļĄāļēāļ“āļāļēāļĢāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āđƒāļŦāđ‰āļŠāļđāļ‡āļ‚āļķāđ‰āļ™āđ„āļ”āđ‰ āļāļēāļĢāļĻāļķāļāļĐāļēāļ™āļĩāđ‰āļˆāļķāļ‡āļ—āļģāļāļēāļĢāļ•āļĢāļ§āļˆāļŠāļ­āļšāļ–āļķāļ‡āļĻāļąāļāļĒāļ āļēāļžāđƒāļ™āļāļēāļĢāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āđ‚āļ”āļĒāļāļēāļĢāļŦāļĄāļąāļāļĢāđˆāļ§āļĄāļĢāļ°āļŦāļ§āđˆāļēāļ‡āđ€āļĻāļĐāļ­āļēāļŦāļēāļĢ (Food Waste, FW) āđāļĨāļ°āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāđ€āļĒāļ·āđˆāļ­āļŠāļĩāļ§āļ āļēāļžāļšāļĢāļĢāļˆāļļāļ­āļēāļŦāļēāļĢ (Cellulose-based Food Packaging Product, CFPP) āļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļĢāļ°āļ”āļąāļšāļ›āļēāļ™āļāļĨāļēāļ‡ (35 Âą 2 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ) āđƒāļ™āļĢāļđāļ›āđāļšāļšāļāļ° (Batch Experiment) āđ€āļ›āđ‡āļ™āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļē 45 āļ§āļąāļ™ āđ‚āļ”āļĒāļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļĢāļ°āļŦāļ§āđˆāļēāļ‡āļ§āļąāļŠāļ”āļļāļ•āļąāđ‰āļ‡āļ•āđ‰āļ™āļ—āļąāđ‰āļ‡ 2 āļŠāļ™āļīāļ”āļ—āļĩāđˆāļ—āļģāļāļēāļĢāļĻāļķāļāļĐāļēāļĄāļĩ 3 āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™ (FW/CFPP 100:0, 40:60 āđāļĨāļ° 0:100 (āđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāļ‚āļ­āļ‡āđāļ‚āđ‡āļ‡āļĢāļ°āđ€āļŦāļĒāļ‡āđˆāļēāļĒ)) āđāļĨāļ°āļĄāļĩāļāļēāļĢāđƒāļŠāđ‰āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļĢāļ°āļŦāļ§āđˆāļēāļ‡āļ§āļąāļŠāļ”āļļāļ•āļąāđ‰āļ‡āļ•āđ‰āļ™āđāļĨāļ°āļŦāļąāļ§Â­āđ€āļŠāļ·āđ‰āļ­āļˆāļļāļĨāļīāļ™āļ—āļĢāļĩāļĒāđŒāđ€āļ—āđˆāļēāļāļąāļš 0.5 āļĢāļ§āļĄāļ—āļąāđ‰āļ‡āļĄāļĩāļāļēāļĢāđ€āļ•āļīāļĄāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāđ„āļšāļ„āļēāļĢāđŒāļšāļ­āđ€āļ™āļ• (NaHCO3) āđ€āļžāļ·āđˆāļ­āđƒāļŦāđ‰āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļĒāđˆāļ­āļĒāļŠāļĨāļēāļĒāļ āļēāļĒāđƒāļ•āđ‰āļŠāļ āļēāļ§āļ°āđ„āļĢāđ‰āļ­āļēāļāļēāļĻāļ­āļĒāļđāđˆāđƒāļ™āļŠāļ āļēāļ§āļ°āļŠāļĄāļ”āļļāļĨ āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āđ„āļ”āđ‰āļĄāļĩāļāļēāļĢāļ™āļģāđ‚āļĄāđ€āļ”āļĨāļ—āļēāļ‡āļ„āļ“āļīāļ•āļĻāļēāļŠāļ•āļĢāđŒ āļˆāļģāļ™āļ§āļ™ 4 āđ‚āļĄāđ€āļ”āļĨ (Modified Gompertz Model, First-order Model, Monod Model āđāļĨāļ° Cone Model) āļĄāļēāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļ„āļ§āļēāļĄāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ‚āļ­āļ‡āļāļēāļĢāļ—āļģāļ™āļēāļĒāļœāļĨāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āļ—āļĩāđˆāđ€āļāļīāļ”āļ‚āļķāđ‰āļ™āļˆāļēāļāļ§āļąāļŠāļ”āļļāļ•āļąāđ‰āļ‡āļ•āđ‰āļ™āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ•āđˆāļēāļ‡ āđ† āļ”āđ‰āļ§āļĒ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļē āļžāļšāļ§āđˆāļē āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™ FW/CFPP 100:0 āđƒāļŦāđ‰āļœāļĨāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āļŠāļ°āļŠāļĄāļŠāļđāļ‡āļ—āļĩāđˆāļŠāļļāļ” āļĢāļ­āļ‡āļĨāļ‡āļĄāļēāļ„āļ·āļ­ 40:60 āđāļĨāļ° 0:100 āđ‚āļ”āļĒāļĄāļĩāļ„āđˆāļēāļœāļĨāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™ āđ€āļ—āđˆāļēāļāļąāļš 459.15, 381.79 āđāļĨāļ° 355.60 āļĄāļīāļĨāļĨāļīāļĨāļīāļ•āļĢāļĄāļēāļ•āļĢāļāļēāļ™āļ•āđˆāļ­āļāļĢāļąāļĄāļ‚āļ­āļ‡āđāļ‚āđ‡āļ‡āļĢāļ°āđ€āļŦāļĒāļ‡āđˆāļēāļĒ āļ•āļēāļĄāļĨāļģāļ”āļąāļš āđāļĨāļ°āļˆāļēāļāđ‚āļĄāđ€āļ”āļĨāļ—āļēāļ‡āļ„āļ“āļīāļ•āļĻāļēāļŠāļ•āļĢāđŒāļ—āļĩāđˆāļ—āļģāļāļēāļĢāļĻāļķāļāļĐāļēāļ—āļąāđ‰āļ‡āļŦāļĄāļ” āļžāļšāļ§āđˆāļē Modified Gompertz Model āđ€āļ›āđ‡āļ™āđ‚āļĄāđ€āļ”āļĨāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāđāļĄāđˆāļ™āļĒāļģāđāļĨāļ°āđ€āļŦāļĄāļēāļ°āļŠāļĄāļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ”āđƒāļ™āļāļēāļĢāđƒāļŠāđ‰āļ—āļģāļ™āļēāļĒāļœāļĨāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āļ‚āļ­āļ‡āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™ FW/CFPP 100:0 āđāļĨāļ° 0:100 āđāļ•āđˆāļŠāļģāļŦāļĢāļąāļšāļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™ FW/CFPP 40:60 āļžāļšāļ§āđˆāļē First-order Model āđ€āļ›āđ‡āļ™āđ‚āļĄāđ€āļ”āļĨāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāđāļĄāđˆāļ™āļĒāļģāđāļĨāļ°āđ€āļŦāļĄāļēāļ°āļŠāļĄāļĄāļēāļāļāļ§āđˆāļē Modified Gompertz Model āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰ āļžāļēāļĢāļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāļ—āļēāļ‡āļˆāļĨāļ™āļžāļĨāļĻāļēāļŠāļ•āļĢāđŒ āđ„āļ”āđ‰āđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļē āļāļēāļĢāļŦāļĄāļąāļāļĢāđˆāļ§āļĄāļĢāļ°āļŦāļ§āđˆāļēāļ‡āđ€āļĻāļĐāļ­āļēāļŦāļēāļĢāđāļĨāļ°āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāđ€āļĒāļ·āđˆāļ­āļŠāļĩāļ§āļ āļēāļžāļšāļĢāļĢāļˆāļļāļ­āļēāļŦāļēāļĢ (FW/CFPP 40:60) āļĄāļĩāļāļēāļĢāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āđƒāļ™āļ­āļąāļ•āļĢāļēāļ—āļĩāđˆāđ€āļĢāđ‡āļ§āļāļ§āđˆāļēāļāļēāļĢāļŦāļĄāļąāļāđ‚āļ”āļĒāđƒāļŠāđ‰āđ€āļĻāļĐāļ­āļēāļŦāļēāļĢāļŦāļĢāļ·āļ­āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāđ€āļĒāļ·āđˆāļ­āļŠāļĩāļ§āļ āļēāļžāļšāļĢāļĢāļˆāļļāļ­āļēāļŦāļēāļĢāđ€āļžāļĩāļĒāļ‡āļ­āļĒāđˆāļēāļ‡āđ€āļ”āļĩāļĒāļ§Anaerobic co-digestion is proven to be a promising technology for enhancing the production of methane. In this study, the biochemical methane potential (BMP) from anaerobic co-digestion of food waste (FW) and cellulose-based food packaging product (CFPP) was carried out under mesophilic (35 Âą 2°C) condition in a batch mode for 45 days. Three mixing ratios of these two substrates (FW/CFPP 100:0, 40:60, and 0:100 based on volatile solids (VS)) were studied with a substrate-to-inoculum ratio of 0.5. Sodium bicarbonate (NaHCO3) was also added to establish a stable anaerobic digestion process. In addition, four mathematical models (Modified Gompertz model, First-order model, Monod model, and Cone model) were employed to evaluate their suitability for predicting the methane production of the examined substrates. Based on the obtained results, it is found that the maximum cumulative methane yield was observed in FW/CFPP 100:0, followed by 40:60 and 0:100 with the values of 459.15, 381.79, and 355.60 NmL/gVS, respectively. Among all the studied kinetic models, it can be seen that the Modified Gompertz model was the most accurate and appropriate in predicting the methane production of FW/CFPP 100:0 and 0:100. However, in the case of FW/CFPP 40:60, the First-order model was found to be a better fit than the Modified Gompertz model. Besides, their kinetic parameters reveal that the co-digestion of FW/CFPP 40:60 had a faster methane production rate than the mono-digestion of FW or CFPP.Keywords: āļĻāļąāļāļĒāļ āļēāļžāļāļēāļĢāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™; āđ€āļĻāļĐāļ­āļēāļŦāļēāļĢ; āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāđ€āļĒāļ·āđˆāļ­āļŠāļĩāļ§āļ āļēāļžāļšāļĢāļĢāļˆāļļāļ­āļēāļŦāļēāļĢ; āļāļēāļĢāļŦāļĄāļąāļāļĢāđˆāļ§āļĄ; āļˆāļĨāļ™āļžāļĨāļĻāļēāļŠāļ•āļĢāđŒ; Biochemical methane potential; Food waste; Cellulose-based food packaging product; Co-digestion; Kinetic
    corecore