7 research outputs found
Recommended from our members
Titanium dioxide nanotubes for production and delivery of nitric oxide and methods for production thereof
The present disclosure describes compositions operable for releasing nitric oxide under photochemical conditions. The compositions include a titanium dioxide nanomaterial and a nitric oxide-releasing compound deposited on the titanium dioxide nanomaterial that is operable to release nitric oxide under photochemical conditions. Titanium dioxide nanomaterials include, for example, titanium dioxide nanotubes. To facilitate the photochemical release of nitric oxide, some embodiments of the compositions further include a semiconductor that is deposited on the titanium dioxide nanotubes. Both the semiconductor and the nitric oxide-releasing compound may be deposited on the interior surface, exterior surface, or both of the titanium dioxide nanotubes. A polymer may wrap the titanium dioxide nanotubes to protect the nitric oxide-releasing compounds from moisture. Also disclosed herein are methods for producing such compositions and medical devices obtained therefrom.Board of Regents, University of Texas Syste
RF non-thermal plasma techniques for catalyst development to improve process efficiencies
Plasma modifications of catalyst supports before and after impregnation of metal precursors improve the activity, selectivity and stability of catalysts, e.g. Ni catalysts for benzene hydrogenation and Pd catalysts for selective hydrogenation of acetylene. Plasma modification of the support before impregnation is slightly more effective than the plasma modification after impregnation. However, plasma modifications after impregnation increase the stability and selectivity of catalysts more effectively. The economic benefit of much improved stability of Ni catalysts for hydrogenation of benzene and the enhanced activity and selectivity of Pd catalysts for acetylene hydrogenation, e.g., is significant. Similar benefits for various catalysts and other industrial processes via RF plasma techniques are expected.U
RF non-thermal plasma techniques for catalyst development to improve process efficiencies
Plasma modifications of catalyst supports before and after impregnation of metal precursors improve the activity, selectivity and stability of catalysts, e.g. Ni catalysts for benzene hydrogenation and Pd catalysts for selective hydrogenation of acetylene. Plasma modification of the support before impregnation is slightly more effective than the plasma modification after impregnation. However, plasma modifications after impregnation increase the stability and selectivity of catalysts more effectively. The economic benefit of much improved stability of Ni catalysts for hydrogenation of benzene and the enhanced activity and selectivity of Pd catalysts for acetylene hydrogenation, e.g., is significant. Similar benefits for various catalysts and other industrial processes via RF plasma techniques are expected.U
RF non-thermal plasma techniques for catalyst development to improve process efficiencies
Plasma modifications of catalyst supports before and after impregnation of metal precursors improve the activity, selectivity and stability of catalysts, e.g. Ni catalysts for benzene hydrogenation and Pd catalysts for selective hydrogenation of acetylene. Plasma modification of the support before impregnation is slightly more effective than the plasma modification after impregnation. However, plasma modifications after impregnation increase the stability and selectivity of catalysts more effectively. The economic benefit of much improved stability of Ni catalysts for hydrogenation of benzene and the enhanced activity and selectivity of Pd catalysts for acetylene hydrogenation, e.g., is significant. Similar benefits for various catalysts and other industrial processes via RF plasma techniques are expected.U