56 research outputs found

    A comparison of prognostic significance of strong ion gap (SIG) with other acid-base markers in the critically ill: a cohort study

    Get PDF
    BACKGROUND: This cohort study compared the prognostic significance of strong ion gap (SIG) with other acid-base markers in the critically ill. METHODS: The relationships between SIG, lactate, anion gap (AG), anion gap albumin-corrected (AG-corrected), base excess or strong ion difference-effective (SIDe), all obtained within the first hour of intensive care unit (ICU) admission, and the hospital mortality of 6878 patients were analysed. The prognostic significance of each acid-base marker, both alone and in combination with the Admission Mortality Prediction Model (MPM0 III) predicted mortality, were assessed by the area under the receiver operating characteristic curve (AUROC). RESULTS: Of the 6878 patients included in the study, 924 patients (13.4 %) died after ICU admission. Except for plasma chloride concentrations, all acid-base markers were significantly different between the survivors and non-survivors. SIG (with lactate: AUROC 0.631, confidence interval [CI] 0.611-0.652; without lactate: AUROC 0.521, 95 % CI 0.500-0.542) only had a modest ability to predict hospital mortality, and this was no better than using lactate concentration alone (AUROC 0.701, 95 % 0.682-0.721). Adding AG-corrected or SIG to a combination of lactate and MPM0 III predicted risks also did not substantially improve the latter's ability to differentiate between survivors and non-survivors. Arterial lactate concentrations explained about 11 % of the variability in the observed mortality, and it was more important than SIG (0.6 %) and SIDe (0.9 %) in predicting hospital mortality after adjusting for MPM0 III predicted risks. Lactate remained as the strongest predictor for mortality in a sensitivity multivariate analysis, allowing for non-linearity of all acid-base markers. CONCLUSIONS: The prognostic significance of SIG was modest and inferior to arterial lactate concentration for the critically ill. Lactate concentration should always be considered regardless whether physiological, base excess or physical-chemical approach is used to interpret acid-base disturbances in critically ill patients

    Effects of resuscitation with crystalloid fluids on cardiac function in patients with severe sepsis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of hypertonic crystalloid solutions, including sodium chloride and bicarbonate, for treating severe sepsis has been much debated in previous investigations. We have investigated the effects of three crystalloid solutions on fluid resuscitation in severe sepsis patients with hypotension.</p> <p>Methods</p> <p>Ninety-four severe sepsis patients with hypotension were randomly assigned to three groups. The patients received the following injections within 15 min at initial treatment: Ns group (n = 32), 5 ml/kg normal saline; Hs group (n = 30), with 5 ml/kg 3.5% sodium chloride; and Sb group (n = 32), 5 ml/kg 5% sodium bicarbonate. Cardiac output (CO), systolic blood pressure, mean arterial pressure (MAP), body temperature, heart rate, respiratory rate and blood gases were measured.</p> <p>Results</p> <p>There were no differences among the three groups in CO, MAP, heart rate or respiratory rate during the 120 min trial or the 8 hour follow-up, and no significant differences in observed mortality rate after 28 days. However, improvement of MAP and CO started earlier in the Sb group than in the Ns and Hs groups. Sodium bicarbonate increased the base excess but did not alter blood pH, lactic acid or [HCO<sub>3</sub>]<sup>- </sup>values; and neither 3.5% hypertonic saline nor 5% sodium bicarbonate altered the Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+ </sup>or Cl<sup>- </sup>levels.</p> <p>Conclusion</p> <p>All three crystalloid solutions may be used for initial volume loading in severe sepsis, and sodium bicarbonate confers a limited benefit on humans with severe sepsis.</p> <p>Trial registration</p> <p>ISRCTN36748319.</p

    Critical care management of patients with COVID-19: early experience in Thailand

    No full text
    Since late December 2019, the world has been challenged with an outbreak of COVID-19. In Thailand, an upper middle–income country with a limited healthcare infrastructure and restricted human resources, nearly 3,000 confirmed COVID-19 cases have been reported as of early May 2020. Public health policies aimed at preventing new COVID-19 cases were very effective in halting the pandemic in Thailand. Case fatality in Thailand has been low (1.7%), at least in part due to early stratification according to risk of disease severity and timely initiation of supportive care with affordable measures. We present our initial experience with COVID-19 in Thailand, focusing on several aspects that may have played a crucial role in curtailment of the pandemic, and elements of care for severely ill COVID-19 patients, including stratification, isolation, and affordable diagnostic approaches and supportive care measures. We also discuss local considerations concerning some proposed experimental treatments

    Chlamydia pneumoniae as risk factor of cardiovascular disease in dialysis patients

    No full text
    [No abstract available

    Pulse high-volume haemofiltration for treatment of severe sepsis: Effects on hemodynamics and survival

    Get PDF
    Introduction Severe sepsis is the leading cause of mortality in critically ill patients. Abnormal concentrations of inflammatory mediators appear to be involved in the pathogenesis of sepsis. Based on the humoral theory of sepsis, a potential therapeutic approach involves high-volume haemofiltration (HVHF), which has exhibited beneficial effects in severe sepsis, improving haemodynamics and unselectively removing proinflammatory and anti-inflammatory mediators. However, concerns have been expressed about the feasibility and costs of continuous HVHF. Here we evaluate a new modality, namely pulse HVHF (PHVHF; 24-hour schedule: HVHF 85 ml/kg per hour for 6 - 8 hours followed by continuous venovenous haemofiltration 35 ml/kg per hour for 16 - 18 hours). Method Fifteen critically ill patients ( seven male; mean Acute Physiology and Chronic Health Evaluation [APACHE] II score 31.2, mean Simplified Acute Physiology Score [ SAPS] II 62, and mean Sequential Organ Failure Assessment 14.2) with severe sepsis underwent daily PHVHF. We measured changes in haemodynamic variables and evaluated the dose of noradrenaline required to maintain mean arterial pressure above 70 mmHg during and after pulse therapy at 6 and 12 hours. PHVHF was performed with 250 ml/min blood flow rate. The bicarbonate-based replacement fluid was used at a 1: 1 ratio in simultaneous pre-dilution and post-dilution. Results No treatment was prematurely discontinued. Haemodynamics were improved by PHVHF, allowing a significant reduction in noradrenaline dose during and at the end of the PHVHF session; this reduction was maintained at 6 and 12 hours after pulse treatment ( P = 0.001). There was also an improvement in systolic blood pressure ( P = 0.04). There were no changes in temperature, cardiac index, oxygenation, arterial pH or urine output during the period of observation. The mean daily Kt/V was 1.92. Predicted mortality rates were 72% ( based on APACHE II score) and 68% ( based on SAPS II score), and the observed 28-day mortality was 47%. Conclusion PHVHF is a feasible modality and improves haemodynamics both during and after therapy. It may be a beneficial adjuvant treatment for severe sepsis/septic shock in terms of patient survival, and it represents a compromise between continuous renal replacement therapy and HVHF
    • …
    corecore