8 research outputs found
Dielectrophoresis of charged colloidal suspensions
We present a theoretical study of dielectrophoretic (DEP) crossover spectrum
of two polarizable particles under the action of a nonuniform AC electric
field. For two approaching particles, the mutual polarization interaction
yields a change in their respective dipole moments, and hence, in the DEP
crossover spectrum. The induced polarization effects are captured by the
multiple image method. Using spectral representation theory, an analytic
expression for the DEP force is derived. We find that the mutual polarization
effects can change the crossover frequency at which the DEP force changes sign.
The results are found to be in agreement with recent experimental observation
and as they go beyond the standard theory, they help to clarify the important
question of the underlying polarization mechanisms
Electrokinetic behavior of two touching inhomogeneous biological cells and colloidal particles: Effects of multipolar interactions
We present a theory to investigate electro-kinetic behavior, namely,
electrorotation and dielectrophoresis under alternating current (AC) applied
fields for a pair of touching inhomogeneous colloidal particles and biological
cells. These inhomogeneous particles are treated as graded ones with physically
motivated model dielectric and conductivity profiles. The mutual polarization
interaction between the particles yields a change in their respective dipole
moments, and hence in the AC electrokinetic spectra. The multipolar
interactions between polarized particles are accurately captured by the
multiple images method. In the point-dipole limit, our theory reproduces the
known results. We find that the multipolar interactions as well as the spatial
fluctuations inside the particles can affect the AC electrokinetic spectra
significantly.Comment: Revised version with minor changes: References added and discussion
extende