4 research outputs found

    Analysis of the Impact of the Fireplace Heating on the Energy Performance of the Family House

    Get PDF
    Reduction of energy use in buildings is an important measure to achieve climate changes of mitigation. It is essential to minimize heat losses when designing energy efficient buildings. For energy efficient building in a cold climate, a large part of the space heating demand is caused by transmission losses through the building envelope. In compliance with the today's trend of designing sustainable and energy-saving architecture, it is necessary firstly to solve the factors influencing the energy balance. This year the subsidy for houses has been valued at € 8,000. The condition is that the building is classified in the energy class A0 according to the Energy Performance Act. Energy class A0 characterizes nearly zero energy buildings. The main concern is for the public to become interested in such buildings. The subsidy is designed to reward and promote those buildings that their heat and technical characteristics and modern technical equipment that meet energy class. In addition to a good plan to raise the profile of such buildings, there has been a lot of speculation to help make buildings in energy class A0. They are mainly owners of family houses where there is no gasification and are forced to have electricity as a source of heat and hot water. Electricity has a high primary energy factor, which means that buildings do not have to be approved

    Analysis of Smart Zone Heating in Different Heating Systems

    Get PDF
    The basic concept in the design of buildings with zero energy consumption is, in addition to high-quality thermal properties of the building envelope, also a correct and efficient system of heating and hot water preparation in residential buildings. One of the basic concepts when designing heating systems is a zone heating system. It is a system that brings effective regulation according to heating zones. In practice, the question sometimes arises as to whether zone regulation of individual rooms in small family houses is necessary. That is whether in such buildings, zone heating is not an unnecessary investment cost. In this paper, we analyze the effect of zone heating in two types of heat transfer systems on the internal operating temperature in the individual analyzed zones, which are interconnected by an internal partition structure. It is a verification that even in smaller spaces, zone heating has a significant potential for energy savings

    Impact of an Innovative Solution for the Interruption of 3-D Point Thermal Bridges in Buildings on Sustainability

    No full text
    During the design of the external cladding, it is possible to use different materials and compositions. One of these possibilities is also a ventilated facade, which consists of a supporting structure, a thermal insulation, a supporting grid, an air gap for ventilation and a cladding layer. The construction of the supporting grid in the ventilated facade must be mechanically anchored into the supporting structure of the external cladding. This mechanical anchoring causes 3-D point thermal bridges in the external cladding itself. Therefore, the aim of this work is to assess and analyze the influence of these 3-D point thermal bridges on transmission heat losses through the external cladding. A Finite Element Mesh analysis has been used for this analysis. Different types of external cladding compositions were modeled in the simulation program, and the effect on the heat transfer coefficient was determined. In addition to the analysis of the existing anchoring systems, an innovative solution has been suggested that is more economical and easier to implement. The results show that the application of anchors and their number impacts significantly on the thermal properties of the envelope. The difference between the anchoring element with a thermal insulation pad and the patented method is minimal. This is a 1.29% difference. The last variant was a proposal (patent) that the anchoring element is only plastic-coated and thus its thermal engineering properties are improved, which is manifested mainly in heat conduction but also from the radiant point of view, as plasticizing the emissivity changes. Compared to the perimeter cladding without the ap-plication of an anchoring element, the heat loss increases by 29.37%. In addition to the energy savings, there are also financial savings. While the plastic pads costs about EUR 0.3, the plastic coating (patent) represents a price of around EUR 0.03. If we had a building with 10,000 m2 of wall area where 6 pieces of anchors per 1 m2 are applied, the savings would be EUR 16,200. Such savings are already significant. The conclusion of this work is that these point thermal bridges have a significant impact on the overall transmission heat loss coefficient and therefore they have overall heat demand and energy demand

    Contribution to Active Thermal Protection Research—Part 2 Verification by Experimental Measurement

    No full text
    This article is closely related to the oldest article titled Contribution to Active Thermal Protection Research—Part 1 Analysis of Energy Functions by Parametric Study. It is a continuation of research that focuses on verifying the energy potential and functions of so-called active thermal protection (ATP). As mentioned in the first part, the amount of thermal energy consumed for heating buildings is one of the main parameters that determine their future design, especially the technical equipment. The issue of reducing the consumption of this energy is implemented in various ways, such as passive thermal protection, i.e., by increasing the thermal insulation parameters of the individual materials of the building envelope or by optimizing the operation of the technical equipment of the buildings. On the other hand, there are also methods of active thermal protection that aim to reduce heat leakage through nontransparent parts of the building envelope. This methodology is based on the validation of the results of a parametric study of the dynamic thermal resistance (DTR) and the heat fluxes to the interior and exterior from the ATP for the investigated envelope of the experimental house EB2020 made of aerated concrete blocks, presented in the article “Contribution to the research on active thermal protection—Part 1, Analysis of energy functions by the parametric study”, by long-term experimental measurements. The novelty of the research lies in the involvement of variant-peak heat/cooling sources in combination with RES and in creating a new, original way of operating energy systems with the possibility of changing and combining the operating modes of the ATP. We have verified the operation of the experimental house in the energy functions of thermal barrier, heating/cooling with RES, and without RES and ATP. The energy saving when using RES and ATP is approximately 37%. Based on the synthesis and induction of analogous forms of the results of previous research into recommendations for the development of building envelopes with energy-active elements, we present further possible outcomes in the field of ATP, as well as already realized and upcoming prototypes of thermal insulation panels
    corecore