85 research outputs found

    Author Correction: Probiotics and prebiotics in intestinal health and disease: from biology to the clinic (Nature Reviews Gastroenterology & Hepatology, (2019), 16, 10, (605-616), 10.1038/s41575-019-0173-3)

    Get PDF
    © 2019, Springer Nature Limited. In the original article published online, the Competing Interests statement was incorrect and should have stated the following: M.E.S. declares personal fees related to probiotics from the following entities: California Dairy Research Foundation, Clorox, Danone, Danone USA, Dutch Mill, General Mills, JHeimbach, Kelley Drye & Warren, Kellogg, Kerry, Medscape, Nestle, New Chapter, Pepsico, Pfizer, Pharmavite, Probi, Procter & Gamble, Trouw Nutrition, Visalia Dairy Company, Williams Mullen, Winclove Probiotics and Yakult. D.J.M. declares personal fees for consulting for Bayer and Pharmavite. G.R. declares that he helped develop and commercialize probiotic strains GR-1 and RC-14, but has had no financial interest in them for over 10 years. He is Chief Scientific Officer for Seed, a company producing probiotic products. Over the past 3 years, he has consulted on probiotics with Acerus Pharmaceuticals, Altmann, Chr. Hansen, Danone, KGK Science, Kimberly-Clark, Metagenics and Seed. G.R.G. and R.A.R. declare no competing interests. This error has been corrected in the HTML and PDF versions of the article

    The prebiotic effect of α-1,2 branched, low molecular weight dextran in the batch and continuous faecal fermentation system

    Get PDF
    The aim of this study was to establish the effect of smaller molecular weight (0.5 and 1.0 kDa) on prebiotic efficacy and its putative sustainability in the human gut. The prebiotic effect of α-1,2 branched, 0.5 and 1 kDa dextrans were evaluated in faecal batch fermentations as compared with inulin. Both dextrans induce similar selectivity towards Bifidobacterium sp., Lactobacillus/Enterococcus and Bacteroides/Prevotella, and producing similar concentrations of short chain fatty acids. However, the 0.5 kDa dextran was fermented faster than the 1 kDa dextran, where both produced lower amount of gas than inulin. The fermentation of 1 kDa dextran was further investigated in continuous gut models. The dextran increased Bifidobacterium and Roseburia sp. populations in the final vessel, while decreasing Clostridium histolyticum and Faecalibacterium prausnitzii. Overall, the α-1,2 branched, 1 kDa dextran induced selective effect on the gut microbiota and stimulated short chain fatty acids, indicating prebiotic sustainability in distal regions of the gut
    corecore