20 research outputs found
AMPK: A regulator of ion channels
Ion transport processes are highly energy consuming. It is therefore critical to couple ion transport processes to the metabolic state of the cell. An important player in this coupling appears to be the AMP-activated protein kinase (AMPK). This kinase becomes activated during conditions of cellular metabolic stress and is well-known for its role in promoting ATP-generating catabolic pathways while turning off ATP-utilizing anabolic pathways. Over the past decade AMPK has also emerged as a key regulator of ion channel activity as an increasing number of ion channels are reported to be either directly or indirectly regulated by the kinase. AMPK therefore provides a necessary link between cellular energy levels and ion channel activity
PKC and AMPK regulation of Kv1.5 potassium channels
The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid rectifier K(+) current (I(Kur)), is regulated through several pathways. Here we investigate if Kv1.5 surface expression is controlled by the 2 kinases PKC and AMPK, using Xenopus oocytes, MDCK cells and atrial derived HL-1 cells. By confocal microscopy combined with electrophysiology we demonstrate that PKC activation reduces Kv1.5 current, through a decrease in membrane expressed channels. AMPK activation was found to decrease the membrane expression in MDCK cells, but not in HL-1 cells and was furthermore shown to be dependent on co-expression of Nedd4–2 in Xenopus oocytes. These results indicate that Kv1.5 channels are regulated by both kinases, although through different molecular mechanisms in different cell systems