16 research outputs found

    Nano-lactoferrin in diagnostic, imaging and targeted delivery for cancer and infectious diseases

    Full text link
    Lactoferrin (Lf) is a natural occurring iron binding protein present in many mammalian excretions and involved in various physiological processes. Lf is used in the transport of iron along with other molecules and ions from the digestive system. However its the modulatory functions exhibited by Lf in connection to immune response, disease regression and diagnosis that has made this protein an attractive therapeutic against chronic diseases. Further, the exciting potentials of employing nanotechnology in advancing drug delivery systems, active disease targeting and prognosis have also shown some encouraging outcomes. This review focuses on the role of Lf in diagnosing infection, cancer, neurological and inflammatory diseases and the recent nanotechnology based strategies

    Cissus quadrangularis inhibits IL-1β induced inflammatory responses on chondrocytes and alleviates bone deterioration in osteotomized rats via p38 MAPK signaling

    Get PDF
    INTRODUCTION: Inflammatory mediators are key players in the pathogenesis of osteoarthritis (OA) and bone destruction. Conventional drugs suppress symptomatic activity and have no therapeutic influence on disease. Cissus quadrangularis and Withania somnifera are widely used for the treatment of bone fractures and wounds; however, the cellular and molecular mechanisms regulated by these herbals are still unclear. METHODS: We established an in vitro OA culture model by exposing human chondrocytes to proinflammatory cytokine and interleukin (IL)-1β for 36 hours prior to treatment with the herbals: C. quadrangularis, W. somnifera, and the combination of the two herbals. Cell viability, toxicity, and gene expression of OA modifying agents were examined. In addition, expression of survivin, which is crucial for cell growth, was analyzed. In vivo work on osteotomized rats studied the bone and cartilage regenerative effects of C. quadrangularis, W. somnifera, and the combination therapy. RESULTS: Exposure of chondrocytes to IL-1β induced significant toxicity and cell death. However, herbal treatment alleviated IL-1β induced cell toxicity and upregulated cell growth and proliferation. C. quadrangularis inhibited gene expression of cytokines and matrix metalloproteinases, known to aggravate cartilage and bone destruction, and augmented expression of survivin by inhibiting p38 MAPK. Interestingly, osteotomized rats treated with C. quadrangularis drastically enhanced alkaline phosphatase and cartilage tissue formation as compared to untreated, W. somnifera only, or the combination of both herbals. CONCLUSION: Our findings demonstrate for the first time the signaling mechanisms regulated by C. quadrangularis and W. somnifera in OA and osteogenesis. We suggest that the chondroprotective effects and regenerative ability of these herbals are via the upregulation of survivin that exerts inhibitory effects on the p38 MAPK signaling pathway. These findings thus validate C. quadrangularis as a potential therapeutic for rheumatic disorders

    Use of antipsychotic medication and its relationship with bone mineral density: A population-based study of men and women

    Get PDF
    BackgroundSchizophrenia has been shown to be associated with reduced bone mineral density (BMD) and higher fracture risk. However, less is known whether antipsychotic treatment is associated with reduced BMD. Thus, we aimed to examine associations between antipsychotic use and BMD among men and women drawn from the general population.MethodsThis cross-sectional study involved 793 women and 587 men enrolled in the Geelong Osteoporosis Study (GOS). BMD was determined using dual-energy X-ray absorptiometry at the spine and hip. Information regarding socio-economic status (SES), current medication and/or supplementation use, lifestyle factors, and anthropometry was collected. Association between antipsychotic use and BMD was determined using linear regression after adjusting for potential confounders.ResultsOf the group, 33 women (4.2%) and 16 men (2.7%) currently used antipsychotics. Age was identified as an effect modifier in the association between antipsychotic use and BMD for women. Amongst women aged < 60 years, adjusted mean BMD was 11.1% lower at the spine [1.139 (95%CI 1.063–1.216) vs. 1.250 (95%CI 1.223–1.277) g/cm2, p = 0.005] for antipsychotic users compared to non-users. At the hip, age, weight, and smoking adjusted mean BMD was 9.9% lower [0.893 (95%CI 0.837–0.950) vs. 0.992 (95%CI 0.976–1.007) g/cm2, p < 0.001] for antipsychotic users in comparison with non-users. The pattern persisted following further adjustments. There was no association detected between antipsychotic use and BMD for women aged 60 years and over and for men.ConclusionOur data suggest that antipsychotic medication use is associated with reduced BMD in younger women but not older women or men

    Antibodies, nanobodies, or aptamers—which is best for deciphering the proteomes of non-model species?

    Full text link
    This planet is home to countless species, some more well-known than the others. While we have developed many techniques to be able to interrogate some of the “omics”, proteomics is becoming recognized as a very important part of the puzzle, given how important the protein is as a functional part of the cell. Within human health, the proteome is fairly well-established, with numerous reagents being available to decipher cellular pathways. Recent research advancements have assisted in characterizing the proteomes of some model (non-human) species, however, in many other species, we are only just touching the surface. This review considers three main reagent classes—antibodies, aptamers, and nanobodies—as a means of continuing to investigate the proteomes of non-model species without the complications of understanding the full protein signature of a species. Considerations of ease of production, potential applications, and the necessity for producing a new reagent depending on homology are presented

    Zebrafish Models of Paediatric Brain Tumours

    No full text
    Paediatric brain cancer is the second most common childhood cancer and is the leading cause of cancer-related deaths in children. Despite significant advancements in the treatment modalities and improvements in the 5-year survival rate, it leaves long-term therapy-associated side effects in paediatric patients. Addressing these impairments demands further understanding of the molecularity and heterogeneity of these brain tumours, which can be demonstrated using different animal models of paediatric brain cancer. Here we review the use of zebrafish as potential in vivo models for paediatric brain tumour modelling, as well as catalogue the currently available zebrafish models used to study paediatric brain cancer pathophysiology, and discuss key findings, the unique attributes that these models add, current challenges and therapeutic significance

    The effect of oral administration of iron saturated-bovine lactoferrin encapsulated chitosan-nanocarriers on osteoarthritis

    Full text link
    In this study, the therapeutic potentials of 100% iron saturated-bovine lactoferrin encapsulated in alginate-chitosan polymeric nanocarriers (AEC-CP-Fe-bLf-NCs) were examined in in vitro inflammatory OA model and in collagen-induced arthritis (CIA) mice. Oral administration of nanocarriers in mice were non-toxic and significantly induced disease modifying activity by reducing joint inflammation and downregulating the expression of catabolic genes, IL-1β, NO, JNK and MAPK. In addition, up-regulation of type II collagen, aggrecan and inflammation depleted iron and calcium metabolisms via inhibition of miRNA of iron transporting receptors was shown in AEC-CP-Fe-bLf-NCs treated mice

    The role of nanomedicine in cell based therapeutics in cancer and inflammation.

    Full text link
    Cell based therapeutics is one of the most rapidly advancing medical fields, bringing together a range of fields including transplantation, tissue engineering and regeneration, biomaterials and stem cell biology. However, traditional cell-based therapeutics have many limitations, one of which is their harmful effects exhibited on healthy body cells due to their lack of specificity. Nanomedicine is providing an alternative treatment strategy that is more targeted and specific to a range of diseases. Varying from polymers conjugated with drugs or tissue targeting molecules, to proteins encapsulated within a polymer shell, nanomedicine will without a doubt play a major role in designing effective cell-based therapeutics that can overcome certain classical problems. These may include from addressing the problem of non-specificity of contemporary treatments to overcoming mechanical barriers, such as crossing cell membranes. This review summarises the recent work on nano-based cell therapy as a regenerative agent and as a therapeutic for cancer and neurological diseases

    Nanotechnology based platforms for survivin targeted drug discovery

    Full text link
    Introduction: Development of an effective, safe and targeted drug delivery system to fight cancer and other diseases is a prime focus in the area of drug discovery. The emerging field of nanotechnology has revolutionised the way cancer therapy and diagnosis is achieved primarily due to the recent advances in material engineering and drug availability. Further, the recognition of the crucial role played by anti-apoptotic proteins such as survivin, has initiated the development of therapeutics that can target this protein as an attempt to develop alternative cancer therapies. However, a key challenge faced in drug development is the efficient delivery of survivin-targeted molecules to specific areas in the body.Areas covered: This review primarily focuses on the different strategies employing nanotechnology for targeting survivin expressed in human cancers. Different nanomaterials incorporating nucleic molecules or drugs targeted at survivin are discussed and the results obtained from studies are highlighted.Expert opinion: There are extensive studies reporting different treatment regimens for cancer, however, they still result in systemic toxicity, reduced bioavailability and ineffective delivery. Novel approaches involve the use of biocompatible nanomaterials together with gene or drug molecules to target proteins such as survivin, which is overexpressed in cancerous cells. These nanoformulations allow the benefits of protecting easily degradable molecules, allow controlled release, and enhance targeted delivery and effectiveness. Hence, nanotherapy utilizing survivin targeting can be considered to play a key role in the development of personalized nanomedicine for cancer

    Antiarthritic and chondroprotective activity of Lakshadi Guggul in novel alginate-enclosed chitosan calcium phosphate nanocarriers

    Full text link
    Aim:&nbsp;This study aimed to evaluate the antiarthritic and chondroprotective potentials of Lakshadi Guggul (LG) and Cissus quadrangularis encapsulated in novel alginate-enclosed chitosan-calcium phosphate nanocarriers (NCs) both in vitro in primary human chondrocytes and in vivo in mice with collagen-induced arthritis. Materials &amp; methods: Chondrocytes exposed to IL-1beta and osteoarthritis chondrocytes grown in an ex vivo inflammation-based coculture were incubated with different concentrations of herbals, and cell modulatory activities were determined. For in vivo studies, herbals and their encapsulated nanoformulations were administered orally to DBA/1 mice with collagen-induce arthritis. Results:C. quadrangularis and LG showed enhanced chondroprotective and proliferative activity in IL-1beta-exposed primary chondrocytes, with LG showing the highest therapeutic potency. LG increased viability, proliferative and mitogenic activity, and inhibited cell apoptosis and mitochondrial depolarization. In vivo studies with LG and alginate-enclosed chitosan-calcium phosphate LG NCs revealed cartilage regenerative activity in those administered with the nanoformulation. The NCs were nontoxic to mice, reduced joint swelling and paw volume, and inhibited gene expression of MMPs and cytokines. Conclusion: The promising results from this study reveal, for the first time, the novel polymeric NC encapsulating LG as a potential therapeutic for rheumatic diseases. Original submitted 10 October 2013; Revised submitted 13 December 2013.</div
    corecore