4 research outputs found

    Nanofiltration applications of tough MWNT buckypaper membranes containing biopolymers

    Get PDF
    © 2017 Elsevier B.V. The ability of biopolymers (bovine serum albumin, lysozyme, chitosan, gellan gum and DNA) to facilitate formation of aqueous dispersions of MWNTs was investigated using a combination of absorption spectrophotometry and optical microscopy. Subsequently, self-supporting carbon nanotube membranes, known as buckypapers (BPs), were prepared by vacuum filtration of the dispersions. Microanalytical data obtained from the BPs confirmed the retention of biopolymers within their structures. Tensile test measurements performed on the BPs showed that incorporation of the biopolymers resulted in significant improvements in mechanical properties, compared to analogous BPs containing MWNTs and the low molecular mass dispersant Triton X-100. For example, MWNT/CHT BPs (CHT=chitosan) exhibited values for tensile strength, ductility, Young's modulus and toughness of 28±2 MPa, 5.3±2.7%, 0.9±0.3 GPa and 1.7±0.3 J g−1, respectively. Each of these values are significantly greater than those obtained for MWNT/Trix BPs, prepared using a low molecular weight dispersant (6±3 MPa, 1.3±0.2%, 0.6±0.3 GPa and 0.10±0.06 J g−1, respectively). This significant improvement in mechanical properties is attributed to the ability of the long biopolymer molecules to act as flexible bridges between the short CNTs. All BPs possessed hydrophilic surfaces, with contact angles ranging from 29±2° to 57±5°. Nitrogen gas porosimetry showed that the BPs have highly porous internal structures, while scanning electron microscopy (SEM) showed their surface morphologies have numerous pore openings. The permeability of the BPs towards water, inorganic salts, and dissolved trace organic contaminants (TrOCs), such as pharmaceuticals, personal care products, and pesticides, was investigated through filtration experiments. Of the twelve TrOCs investigated in this study, nine were rejected by more than 95% by BPs composed of MWNTs and chitosan. The latter BPs also demonstrated good rejection of both NaCl (30–55%) and MgSO4(40–70%)

    Impact of inorganic salts on degradation of bisphenol A and diclofenac by crude extracellular enzyme from Pleurotus ostreatus

    Full text link
    © 2017, © 2017 Informa UK Limited, trading as Taylor & Francis Group. This study investigated the influence of inorganic salts on enzymatic activity and the removal of trace organic contaminants (TrOCs) by crude laccase from the white-rot fungus Pleurotus ostreatus. A systematic analysis of 15 cations and anions from common inorganic salts was presented. Laccase activity was not inhibited by monovalent cations (i.e. Na + , NH 4+ , K + ), while the presence of divalent and trivalent cations showed variable impact–from negligible to complete inhibition–of both laccase activity and its TrOC removal performance. Of interest was the observation of discrepancy between residual laccase activity and TrOC removal in the presence of some ions. Mg 2+ had negligible impact on residual laccase activity but significant impact on TrOC removal. Conversely, F − showed greater impact on residual laccase activity than on TrOC removal. This observation indicated different impacts of the interfering ions on the interaction between laccase and TrOCs as compared to that between laccase and the reagent used to measure its activity, implicating that residual laccase activity may not always be an accurate indicator of TrOC removal. The degree of impact of halides was in the order of F − > I − > Br − > Cl − . Particularly, the tolerance of the tested laccase to Cl − has important implications for a range of industrial applications

    Not Available

    No full text
    Not AvailableSymbiotic (Rhizobia, Frankia, and VAM) or free-living (Azotobacter, and Clostridium) association of plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF) is essential for plant and soil health. Nitrogen (N), phosphorus (P) and potassium (K) as major and iron (Fe) and zinc (Zn) as the minor elements are key to plant health. They are important constituents of plant genetic material (N, P) and chlorophyll content (N, Fe) and important for enzymatic activities (Fe, Zn) and are involved in many biochemical and physiological activities. The ‘microbiome’ around the rhizosphere is specific to plant type and involved in nutrient cycling through various processes such as fixation (N), solubilization, mineralization (P, K) and uptake, with the help of various organic acids (gluconic acid, oxalic acid, and tartaric acid), siderophore activity (Fe uptake) and enzymatic actions (nitrogenase, phytases, and acid phosphatases). Phytohormones essential to plant growth and development are produced by microbes themselves or induce their production via other hormones or communication chemicals, viz., volatile organic compounds (VOCs) like 2-pentylfuran, 2,3-butanediol and acetonin. PGPR (Pseudomonas, Trichoderma and Streptomyces) helps the host plant to fight against various abiotic and biotic stresses by the release of bactericidal and fungicidal enzymes, metabolite accumulation and induced systemic resistance (ISR), systemic acquired resistance (SAR) by phytohormones (jasmonic acid, salicylic acid, and ethylene) and VOCs. Attributing to so many benefits, microbes are increasingly becoming part of sustainable agriculture where PGPR (Rhizobium and Pseudomonas) and fungi (Aspergillus, Trichoderma and VAM) are being used as biofertilizers either single strained or in consortia approach, where the latter is found to be more beneficial for plant and soil health.Not Availabl
    corecore