5 research outputs found

    Single Cell Genome Amplification Accelerates Identification of the Apratoxin Biosynthetic Pathway from a Complex Microbial Assemblage

    Get PDF
    Filamentous marine cyanobacteria are extraordinarily rich sources of structurally novel, biomedically relevant natural products. To understand their biosynthetic origins as well as produce increased supplies and analog molecules, access to the clustered biosynthetic genes that encode for the assembly enzymes is necessary. Complicating these efforts is the universal presence of heterotrophic bacteria in the cell wall and sheath material of cyanobacteria obtained from the environment and those grown in uni-cyanobacterial culture. Moreover, the high similarity in genetic elements across disparate secondary metabolite biosynthetic pathways renders imprecise current gene cluster targeting strategies and contributes sequence complexity resulting in partial genome coverage. Thus, it was necessary to use a dual-method approach of single-cell genomic sequencing based on multiple displacement amplification (MDA) and metagenomic library screening. Here, we report the identification of the putative apratoxin. A biosynthetic gene cluster, a potent cancer cell cytotoxin with promise for medicinal applications. The roughly 58 kb biosynthetic gene cluster is composed of 12 open reading frames and has a type I modular mixed polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS) organization and features loading and off-loading domain architecture never previously described. Moreover, this work represents the first successful isolation of a complete biosynthetic gene cluster from Lyngbya bouillonii, a tropical marine cyanobacterium renowned for its production of diverse bioactive secondary metabolites

    Tunable single-cell extraction for molecular analyses

    Full text link
    Because of cellular heterogeneity, the analysis of endogenous molecules from single cells is of significant interest and has major implications. While micromanipulation or cell sorting followed by cell lysis is already used for subsequent molecular examinations, approaches to directly extract the content of living cells remain a challenging but promising alternative to achieving non-destructive sampling and cell-context preservation. Here, we demonstrate the quantitative extraction from single cells with spatiotemporal control using fluidic force microscopy. We further present a comprehensive analysis of the soluble molecules withdrawn from the cytoplasm or the nucleus, including the detection of enzyme activities and transcript abundances. This approach has uncovered the ability of cells to withstand extraction of up to several picoliters and opens opportunities to study cellular dynamics and cell-cell communication under physiological conditions at the single-cell level

    Metamorphic enzyme assembly in polyketide diversification

    No full text
    Natural product chemical diversity is fuelled by the emergence and ongoing evolution of biosynthetic pathways in secondary metabolism. However, co-evolution of enzymes for metabolic diversification is not well understood, especially at the biochemical level. Here, two parallel assemblies with an extraordinarily high sequence identity from Lyngbya majuscula form a Β-branched cyclopropane in the curacin A pathway (Cur), and a vinyl chloride group in the jamaicamide pathway (Jam). The components include a halogenase, a 3-hydroxy-3-methylglutaryl enzyme cassette for polyketide Β-branching, and an enoyl reductase domain. The halogenase from CurA, and the dehydratases (ECH"1s), decarboxylases (ECH"2s) and enoyl reductase domains from both Cur and Jam, were assessed biochemically to determine the mechanisms of cyclopropane and vinyl chloride formation. Unexpectedly, the polyketide Β-branching pathway was modified by introduction of a -chlorination step on (S)-3-hydroxy-3-methylglutaryl mediated by Cur halogenase, a non-haem Fe(ii), α-ketoglutarate-dependent enzyme. In a divergent scheme, Cur ECH"2 was found to catalyse formation of the α,Β enoyl thioester, whereas Jam ECH"2 formed a vinyl chloride moiety by selectively generating the corresponding Β, enoyl thioester of the 3-methyl-4-chloroglutaconyl decarboxylation product. Finally, the enoyl reductase domain of CurF specifically catalysed an unprecedented cyclopropanation on the chlorinated product of Cur ECH"2 instead of the canonical α,Β C ≤ C saturation reaction. Thus, the combination of chlorination and polyketide Β-branching, coupled with mechanistic diversification of ECH"2 and enoyl reductase, leads to the formation of cyclopropane and vinyl chloride moieties. These results reveal a parallel interplay of evolutionary events in multienzyme systems leading to functional group diversity in secondary metabolites. © 2009 Macmillan Publishers Limited. All rights reserved
    corecore