7 research outputs found

    Morphologic and Molecular Genetic Aspects of Oligodendroglial Neoplasms.

    No full text
    Morphologic criteria for diagnosing oligodendrogliomas and for classifying them as well-differentiated (World Health Organization grade II) and anaplastic (World Health Organization grade III) are well recognized. Nevertheless, applying these guidelines to specific cases often reveals discrepancies among different observers. In addition, whether a given tumor also contains an astrocytic component may be debatable. Loss of heterozygosity studies have demonstrated that oligodendroglial neoplasms have a high incidence of loss of the 1p and 19q chromosomal arms. Although loss of heterozygosity for portions of 19q are sometimes seen in astrocytic neoplasms, these tumors seldom show complete loss of 19q accompanied by loss of 1p. Loss of 9p or homozygous deletion of the CDKN2 gene or both are associated with anaplastic oligodendrogliomas, whereas loss of 17p or TP53 gene mutations or both are frequent in astrocytomas, but rare in oligodendrogliomas. These observations suggest that molecular genetic parameters could provide an objective, reproducible framework for classifying oligodendroglial neoplasms

    Molecular Pathogenesis of Malignant Gliomas.

    No full text
    De novo glioblastomas develop in older patients without prior clinical history of less malignant tumors. Progressive glioblastomas are common among younger patients and arise through progression from lower-grade astrocytomas. CDKN2A deletions, PTEN alterations, and EGFR amplification are more prevalent among de novo glioblastomas, whereas p53 mutations are more common among progressive glioblastomas. Loss of heterozygosity (LOH) for chromosome 10 is seen uniformly among both de novo and progressive high-grade astrocytomas. The inactivation of the PTEN gene is found in approximately 30% to 40% of astrocytomas with chromosome 10 loss, and LOH pattern in the remaining astrocytomas strongly supports the presence of another yet unidentified tumor suppressor gene telomeric to PTEN. More than 80% of oligodendrogliomas exhibit LOH for 1 p and 19q alleles. Oligoastrocytomas with 1p/19q LOH are related to oligodendrogliomas, and those with p53 mutations are related to astrocytomas

    Comparative Genetic Patterns of Glioblastoma Multiforme: Potential Diagnostic Tool for Tumor Classification.

    No full text
    Cytogenetic and molecular genetic studies of glioblastoma multiforme (GBM) have shown that the most frequent alterations are gains of chromosome 7, losses of 9p loci and chromosome 10, and gene amplification, primarily of the epidermal growth factor receptor (EGFR) gene. Although this profile is potentially useful in distinguishing GBM from other tumor types, the techniques used tend to be labor intensive, and some can detect only gains or losses of genetic loci. Comparative genomic hybridization (CGH) is a powerful technique capable of identifying both gains and losses of DNA sequences. The present study compares the CGH evaluation of 22 GBM with classic cytogenetics, loss of heterozygosity by allelotyping, and gene amplification by Southern blot analysis to determine the reliability of CGH in the genetic characterization of GBM. The CGH and karyotypic data were consistent in showing gain of chromosome 7 accompanied by a loss of chromosome 10 as the most frequent abnormality, followed by a loss of 9p in 17 of 22 GBM cases. Loss of heterozygosity of chromosomes 10 (19/22) and 9p (9/22) loci confirmed the underrepresentation by CGH. Genomic amplifications were observed by CGH in 5 of the 10 cases where gene amplification was detected by Southern blot analysis. The data show that CGH is equally reliable, compared with the more established genetic methods, for recognizing the prominent genetic alterations associated with GBM and support its use as a plausible adjunct to glioma classification

    Survival Analysis of Presumptive Prognostic Markers Among Oligodendrogliomas.

    No full text
    BACKGROUND: Allelic losses of 1p and 19q arms correlate with the oligodendroglial phenotype as well as with sensitivity to radiotherapy and chemotherapy. Furthermore, the DNA repair gene, methylguanine methyltransferase (MGMT), is diminished in 80% of oligodendroglial tumors and represents a possible mechanism for this therapeutic sensitivity. However, the authors questioned the relevance of genetic testing and measuring MGMT levels in tumors that were diagnostic of oligodendroglioma. METHODS: The authors performed a retrospective analysis of 1p, 19q, 9p21, TP53, and MGMT status in 46 patients with oligodendrogliomas to address any relations that may exist among these markers with regard to progression-free survival (PFS) and total survival. Methodologies included comparative genomic hybridization; loss of heterozygosity (LOH) on 1p, 19q, and 9p21; TP53 mutational analysis; and immunohistochemistry for MGMT. RESULTS: The authors found that survival among patients with light microscopically diagnosed oligodendroglial tumors demonstrating LOH of 1p and 19q trended toward statistical significance (P = 0.102 and P = 0.058, respectively). 9p21 LOH was significant as a predictor of PFS only among anaplastic oligodendrogliomas in this cohort (P = 0.033). TP53 mutation was found to be significantly predictive of a shorter survival (P = 0.027) among all patients and exhibited a strong trend toward a shorter PFS (P = 0.060). Low-level MGMT labeling index (LI) (\u3c 20%) was noted in 86% of all oligodendroglial tumors. MGMT LI was not found to correlate with an improved PFS or total survival in this cohort, recognizing that median survival was not reached after a median follow-up of 104 months. CONCLUSIONS: 9p21 and TP53 mutational status assisted in developing a stricter subclassification of these tumors with prognostic significance. MGMT levels were decreased in a majority of oligodendrogliomas

    Molecular Genetic Aspects of Oligodendrogliomas Including Analysis By Comparative Genomic Hybridization.

    No full text
    Oligodendroglial neoplasms are a subgroup of gliomas with distinctive morphological characteristics. In the present study we have evaluated a series of these tumors to define their molecular profiles and to determine whether there is a relationship between molecular genetic parameters and histological pattern in this tumor type. Loss of heterozygosity (LOH) for 1p and 19q was seen in 17/23 (74%) well-differentiated oligodendrogliomas, in 18/23 (83%) anaplastic oligodendrogliomas, and in 3/8 (38%) oligoastrocytomas grades II and III. LOH for 17p and/or mutations of the TP53 gene occurred in 14 of these 55 tumors. Only one of the 14 cases with 17p LOH/TP53 gene mutation also had LOH for 1p and 19q, and significant astrocytic elements were seen histologically in the majority of these 14 tumors. LOH for 9p and/or deletion of the CDKN2A gene occurred in 15 of these 55 tumors, and 11 of these cases were among the 24 (42%) anaplastic oligodendrogliomas. Comparative genomic hybridization (CGH) identified the majority of cases with 1p and 19q loss and, in addition, showed frequent loss of chromosomes 4, 14, 15, and 18. These findings demonstrate that oligodendroglial neoplasms usually have loss of 1p and 19q whereas astrocytomas of the progressive type frequently contain mutations of the TP53 gene, and that 9p loss and CDKN2A deletions are associated with progression from well-differentiated to anaplastic oligodendrogliomas

    Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: longitudinal analysis of results from the MAL-ED cohort study

    No full text
    Summary: Background: Enteropathogen infections in early childhood not only cause diarrhoea but contribute to poor growth. We used molecular diagnostics to assess whether particular enteropathogens were associated with linear growth across seven low-resource settings. Methods: We used quantitative PCR to detect 29 enteropathogens in diarrhoeal and non-diarrhoeal stools collected from children in the first 2 years of life obtained during the Etiology, Risk Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) multisite cohort study. Length was measured monthly. We estimated associations between aetiology-specific diarrhoea and subclinical enteropathogen infection and quantity and attained length in 3 month intervals, at age 2 and 5 years, and used a longitudinal model to account for temporality and time-dependent confounding. Findings: Among 1469 children who completed 2 year follow-up, 35 622 stool samples were tested and yielded valid results. Diarrhoeal episodes attributed to bacteria and parasites, but not viruses, were associated with small decreases in length after 3 months and at age 2 years. Substantial decrements in length at 2 years were associated with subclinical, non-diarrhoeal, infection with Shigella (length-for-age Z score [LAZ] reduction −0·14, 95% CI −0·27 to −0·01), enteroaggregative Escherichia coli (−0·21, −0·37 to −0·05), Campylobacter (−0·17, −0·32 to −0·01), and Giardia (−0·17, −0·30 to −0·05). Norovirus, Cryptosporidium, typical enteropathogenic E coli, and Enterocytozoon bieneusi were also associated with small decrements in LAZ. Shigella and E bieneusi were associated with the largest decreases in LAZ per log increase in quantity per g of stool (−0·13 LAZ, 95% CI −0·22 to −0·03 for Shigella; −0·14, −0·26 to −0·02 for E bieneusi). Based on these models, interventions that successfully decrease exposure to Shigella, enteroaggregative E coli, Campylobacter, and Giardia could increase mean length of children by 0·12–0·37 LAZ (0·4–1·2 cm) at the MAL-ED sites. Interpretation: Subclinical infection and quantity of pathogens, particularly Shigella, enteroaggregative E coli, Campylobacter, and Giardia, had a substantial negative association with linear growth, which was sustained during the first 2 years of life, and in some cases, to 5 years. Successfully reducing exposure to certain pathogens might reduce global stunting. Funding: Bill & Melinda Gates Foundation
    corecore