73 research outputs found
Inner/Outer Nuclear Membrane Fusion in Nuclear Pore Assembly: Biochemical Demonstration and Molecular Analysis
The nuclear pore complex (NPC) is characterized by a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel, within which the nuclear pore is built, has little evolutionary precedent. In this report we demonstrate and map the inner/outer nuclear membrane fusion in NPC assembly
An overview of the utilisation of microalgae biomass derived from nutrient recycling of wet market wastewater and slaughterhouse wastewater
Microalgae have high nutritional values for aquatic organisms compared to fish meal, because microalgae cells are rich in proteins, lipids, and carbohydrates. However, the high cost for the commercial production of microalgae biomass using fresh water or artificial media limits its use as fish feed. Few studies have investigated the potential of wet market wastewater and slaughterhouse wastewater for the production of microalgae biomass. Hence, this study aims to highlight the potential of these types of wastewater as an alternative superior medium for microalgae biomass as they contain high levels of nutrients required for microalgae growth. This paper focuses on the benefits of microalgae biomass produced during the phycore-mediation of wet market wastewater and slaughterhouse wastewater as fish feed. The extraction techniques for lipids and proteins as well as the studies conducted on the use of microalgae biomass as fish feed were reviewed. The results showed that microalgae biomass can be used as fish feed due to feed utilisation efficiency, physiological activity, increased resistance for several diseases, improved stress response, and improved protein retention
Micro-algae come of age as a platform for recombinant protein production
A complete set of genetic tools is still being developed for the micro-alga Chlamydomonas reinhardtii. Yet even with this incomplete set, this photosynthetic single-celled plant has demonstrated significant promise as a platform for recombinant protein expression. In recent years, techniques have been developed that allow for robust expression of genes from both the nuclear and plastid genome. With these advances, many research groups have examined the pliability of this and other micro-algae as biological machines capable of producing recombinant peptides and proteins. This review describes recent successes in recombinant protein production in Chlamydomonas, including production of complex mammalian therapeutic proteins and monoclonal antibodies at levels sufficient for production at economic parity with existing production platforms. These advances have also shed light on the details of algal protein production at the molecular level, and provide insight into the next steps for optimizing micro-algae as a useful platform for the production of therapeutic and industrially relevant recombinant proteins
Mutation of the Zebrafish Nucleoporin elys Sensitizes Tissue Progenitors to Replication Stress
The recessive lethal mutation flotte lotte (flo) disrupts development of the zebrafish digestive system and other tissues. We show that flo encodes the ortholog of Mel-28/Elys, a highly conserved gene that has been shown to be required for nuclear integrity in worms and nuclear pore complex (NPC) assembly in amphibian and mammalian cells. Maternal elys expression sustains zebrafish flo mutants to larval stages when cells in proliferative tissues that lack nuclear pores undergo cell cycle arrest and apoptosis. p53 mutation rescues apoptosis in the flo retina and optic tectum, but not in the intestine, where the checkpoint kinase Chk2 is activated. Chk2 inhibition and replication stress induced by DNA synthesis inhibitors were lethal to flo larvae. By contrast, flo mutants were not sensitized to agents that cause DNA double strand breaks, thus showing that loss of Elys disrupts responses to selected replication inhibitors. Elys binds Mcm2-7 complexes derived from Xenopus egg extracts. Mutation of elys reduced chromatin binding of Mcm2, but not binding of Mcm3 or Mcm4 in the flo intestine. These in vivo data indicate a role for Elys in Mcm2-chromatin interactions. Furthermore, they support a recently proposed model in which replication origins licensed by excess Mcm2-7 are required for the survival of human cells exposed to replication stress
Photosynthetic production of enantioselective biocatalysts
Global resource depletion poses a dramatic threat to our society and creates a strong demand for alternative resources that do not compete with the production of food. Meeting this challenge requires a thorough rethinking of all steps of the value chain regarding their sustainability resource demand and the possibility to substitute current, petrol-based supply-chains with renewable resources. This regards also the production of catalysts for chemical synthesis. Phototrophic microorganisms have attracted considerable attention as a biomanufacturing platform for the sustainable production of chemicals and biofuels. They allow the direct utilization of carbon dioxide and do not compete with food production. Photosynthetic enzyme production of catalysts would be a sustainable supply of these important components of the biotechnological and chemical industries. This paper focuses on the usefulness of recombinant cyanobacteria for the photosynthetic expression of enantioselective catalysts. As a proof of concept, we used the cyanobacterium sp. PCC 6803 for the heterologous expression of two highly enantioselective enzymes.
We investigated the expression yield and the usefulness of cyanobacterial cell extracts for conducting stereoselective reactions. The cyanobacterial enzyme expression achieved protein yields of 3% of total soluble protein (%TSP) while the expression in yielded 6-8% TSP. Cell-free extracts from a recombinant strain expressing the recombinant esterase ST0071 from the thermophilic organism ST0071 and arylmalonate decarboxylase from showed excellent enantioselectivity (>99% ee) and yield (>91%) in the desymmetrisation of prochiral malonates.
We were able to present the proof-of-concept of photoautotrophic enzyme expression as a viable alternative to heterotrophic expression hosts. Our results show that the introduction of foreign genes is straightforward. Cell components from did not interfere with the stereoselective transformations, underlining the usability of photoautotrophic organisms for the production of enzymes. Given the considerable commercial value of recombinant biocatalysts, cyanobacterial enzyme expression has thus the potential to complement existing approaches to use phototrophic organisms for the production of chemicals and biofuels
- …