3 research outputs found

    Effect of Ultrasonic-Assisted Enzymatic Hydrolysis on Functional Properties and Antioxidant Activity of Eri Silkworm Pupa Protein Isolate

    No full text
    Philosamia ricini (Eri silkworm) pupa protein isolate (EPI) was utilized to prepare pupa protein hydrolysate (EPIH) through enzymatic hydrolysis. Additionally, the isolate underwent ultrasonic treatment at 20 kHz to become ultrasound pretreated EPI (EPIU), which was then enzymatically hydrolyzed to obtain ultrasound pretreated protein hydrolysate (EPIUH). The physicochemical properties of these samples were investigated, including molecular weight, solubility, foaming and emulsion properties, water- and oil-holding capacity, antioxidant activity, and color. When compared to EPI (used as the control), EPIU exhibited a high degree of hydrolysis at 20 minutes (DH=29.24%). At a total process time of 20 minutes, the degree of hydrolysis for EPIH, EPIU, and EPIUH was found to be 13%, 29%, and 41%, respectively. SDS-PAGE analysis indicated no difference in molecular weight between EPI and EPIU (11–75 kDa). However, the molecular weight profiles of EPIH and EPIUH were reduced (8–45 kDa), resulting in changes in protein functionalities. The high DH value contributed to the enhancement of antioxidant activity, solubility, emulsion capacity, emulsion stability, and foam capacity of the protein isolate at pH 7. Furthermore, the ultrasonic pretreatment of the protein hydrolysate increased the lightness of the protein powder by reducing the enzyme activity of the polyphenol oxidase (PPO). These results suggest that ultrasonic pretreatment of the protein hydrolysate could be applied to improve the properties of Eri silkworm pupa protein for use in the food and beverage industry, such as protein-rich beverages or salad dressings

    Rehydration and Textural Properties of Dried Konjac Noodles: Effect of Alkaline and Some Gelling Agents

    No full text
    Konjac glucomannan flour, which mainly consists of glucomannan, is an indigestible dietary fiber. Therefore, it has been broadly used as low-calorie food ingredient in various kinds of foods, beverages, and pharmaceutical products. In this study, the production of dried konjac noodles was evaluated by studying the effects of alkalinity using limewater versus calcium hydroxide and the gelling agent sodium alginate on textural properties of konjac noodles. Drying and rehydration conditions were studied to evaluate the optimum conditions for producing dried konjac noodles. By considering the springiness and cohesiveness of the konjac noodles, the results indicated that using 3% konjac glucomannan flour with limewater and an incubation time of 30 min were the most suitable conditions. In addition, hot air drying at 80 °C for 55 min and soaking in hot water for 9 min were the optimum drying and rehydration conditions

    Characteristics of Amorphophallus konjac as indicated by its genome

    No full text
    Abstract Amorphophallus konjac, belonging to the genus Amorphophallus of the Araceae family, is an economically important crop widely used in health products and biomaterials. In the present work, we performed the whole-genome assembly of A. konjac based on the NovaSeq platform sequence data. The final genome assembly was 4.58 Gb with a scaffold N50 of 3212 bp. The genome includes 39,421 protein-coding genes, and 71.75% of the assemblies were repetitive sequences. Comparative genomic analysis showed 1647 gene families have expanded and 2685 contracted in the A. konjac genome. Likewise, genome evolution analysis indicated that A. konjac underwent whole-genome duplication, possibly contributing to the expansion of certain gene families. Furthermore, we identified many candidate genes involved in the tuber formation and development, cellulose and lignification synthesis. The genome of A. konjac obtained in this work provides a valuable resource for the further study of the genetics, genomics, and breeding of this economically important crop, as well as for evolutionary studies of Araceae family
    corecore