26 research outputs found
Telómeros: la razón por la que las infecciones nos hacen envejecer más rápido
De cada infección de la que nos defiende nuestro sistema inmune no solo salimos algo cansados sino, sobre todo, más viejos. Las últimas investigaciones sugieren que la edad biológica puede ser mucho mayor que la natural en personas que han padecido múltiples infecciones víricas o que padecen una infección crónica. En estos casos, no es raro que una persona con una edad cronológica (la del documento de identidad) de 40 años tenga un sistema inmunitario propio de una persona de 60, lo que puede impactar profundamente en su calidad de vida y en el funcionamiento de su sistema inmune.N
SAÚDE COMO: HARMONIA; ESPERANÇA; INTELIGÊNCIA; LIBERDADE E AMOR
The present work aims to present the concept of health in its historical course in a broad sense, presenting the possibilities of understanding it through five dimensions such as: harmony; hope; intelligence; freedom; love. The difficulty of understanding the term health in all its amplitude is understood from the acceptance of the bio-psychosocial and spiritual approach. With these five dimensions presented, it seems to have an adequate and broad understanding of the concept of health, allowing new studies to be carried out.El presente trabajo tiene como objetivo presentar el concepto de salud en su recorrido histórico en un sentido amplio, presentando las posibilidades de comprenderlo a través de cinco dimensiones como son: armonía; esperar; inteligencia; libertad; amor. La dificultad de comprender el término salud en toda su amplitud se comprende a partir de la aceptación del enfoque biopsicosocial y espiritual. Con estas cinco dimensiones presentadas, parece tener una comprensión adecuada y amplia del concepto de salud, lo que permite realizar nuevos estudios.
O presente trabalho objetiva apresentar o conceito de saúde em seu percurso histórico num sentido amplo, apresentando a possibilidades de o compreender através de cinco dimensões como a: harmonia; esperança; inteligência; liberdade; amor. Entende-se a dificuldade da compreensão do termo saúde em toda sua amplitude a partir da aceitação da abordagem bio-psicossocial e espiritual. Com estas cinco dimensões apresentadas parece se ter uma compreensão adequada e ampla do conceito de saúde, permitindo que novos estudos sejam realizados.O presente trabalho objetiva apresentar o conceito de saúde em seu percurso histórico num sentido amplo, apresentando a possibilidades de o compreender através de cinco dimensões como a: harmonia; esperança; inteligência; liberdade; amor. Entende-se a dificuldade da compreensão do termo saúde em toda sua amplitude a partir da aceitação da abordagem bio-psicossocial e espiritual. Com estas cinco dimensões apresentadas parece se ter uma compreensão adequada e ampla do conceito de saúde, permitindo que novos estudos sejam realizados
The 2023 wearable photoplethysmography roadmap
Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology
Computational tools for splicing defect prediction in breast/ovarian cancer genes: how efficient are they at predicting RNA alterations?
In silico tools for splicing defect prediction have a key role to assess the impact of variants of uncertain significance. Our aim was to evaluate the performance of a set of commonly used splicing in silico tools comparing the predictions against RNA in vitro results. This was done for natural splice sites of clinically relevant genes in hereditary breast/ovarian cancer (HBOC) and Lynch syndrome. A study divided into two stages was used to evaluate SSF-like, MaxEntScan, NNSplice, HSF, SPANR, and dbscSNV tools. A discovery dataset of 99 variants with unequivocal results of RNA in vitro studies, located in the 10 exonic and 20 intronic nucleotides adjacent to exon-intron boundaries of BRCA1, BRCA2, MLH1, MSH2, MSH6, PMS2, ATM, BRIP1, CDH1, PALB2, PTEN, RAD51D, STK11, and TP53, was collected from four Spanish cancer genetic laboratories. The best stand-alone predictors or combinations were validated with a set of 346 variants in the same genes with clear splicing outcomes reported in the literature. Sensitivity, specificity, accuracy, negative predictive value (NPV) and Mathews Coefficient Correlation (MCC) scores were used to measure the performance. The discovery stage showed that HSF and SSF-like were the most accurate for variants at the donor and acceptor region, respectively. The further combination analysis revealed that HSF, HSF+SSF-like or HSF+SSF-like+MES achieved a high performance for predicting the disruption of donor sites, and SSF-like or a sequential combination of MES and SSF-like for predicting disruption of acceptor sites. The performance confirmation of these last results with the validation dataset, indicated that the highest sensitivity, accuracy, and NPV (99.44%, 99.44%, and 96.88, respectively) were attained with HSF+SSF-like or HSF+SSF-like+MES for donor sites and SSF-like (92.63%, 92.65%, and 84.44, respectively) for acceptor sites. We provide recommendations for combining algorithms to conduct in silico splicing analysis that achieved a high performance. The high NPV obtained allows to select the variants in which the study by in vitro RNA analysis is mandatory against those with a negligible probability of being spliceogenic. Our study also shows that the performance of each specific predictor varies depending on whether the natural splicing sites are donors or acceptors
Computational Tools for Splicing Defect Prediction in Breast/Ovarian Cancer Genes: How Efficient Are They at Predicting RNA Alterations?
In silico tools for splicing defect prediction have a key role to assess the impact of variants of uncertain significance. Our aim was to evaluate the performance of a set of commonly used splicing in silico tools comparing the predictions against RNA in vitro results. This was done for natural splice sites of clinically relevant genes in hereditary breast/ovarian cancer (HBOC) and Lynch syndrome. A study divided into two stages was used to evaluate SSF-like, MaxEntScan, NNSplice, HSF, SPANR, and dbscSNV tools. A discovery dataset of 99 variants with unequivocal results of RNA in vitro studies, located in the 10 exonic and 20 intronic nucleotides adjacent to exon–intron boundaries of BRCA1, BRCA2, MLH1, MSH2, MSH6, PMS2, ATM, BRIP1, CDH1, PALB2, PTEN, RAD51D, STK11, and TP53, was collected from four Spanish cancer genetic laboratories. The best stand-alone predictors or combinations were validated with a set of 346 variants in the same genes with clear splicing outcomes reported in the literature. Sensitivity, specificity, accuracy, negative predictive value (NPV) and Mathews Coefficient Correlation (MCC) scores were used to measure the performance. The discovery stage showed that HSF and SSF-like were the most accurate for variants at the donor and acceptor region, respectively. The further combination analysis revealed that HSF, HSF+SSF-like or HSF+SSF-like+MES achieved a high performance for predicting the disruption of donor sites, and SSF-like or a sequential combination of MES and SSF-like for predicting disruption of acceptor sites. The performance confirmation of these last results with the validation dataset, indicated that the highest sensitivity, accuracy, and NPV (99.44%, 99.44%, and 96.88, respectively) were attained with HSF+SSF-like or HSF+SSF-like+MES for donor sites and SSF-like (92.63%, 92.65%, and 84.44, respectively) for acceptor sites.We provide recommendations for combining algorithms to conduct in silico splicing analysis that achieved a high performance. The high NPV obtained allows to select the variants in which the study by in vitro RNA analysis is mandatory against those with a negligible probability of being spliceogenic. Our study also shows that the performance of each specific predictor varies depending on whether the natural splicing sites are donors or acceptors
The BRCA2 c.68-7T > A variant is not pathogenic: A model for clinical calibration of spliceogenicity.
Although the spliceogenic nature of the BRCA2 c.68-7T>A variant has been demonstrated, its association with cancer risk remains ontroversial. In this study, we accurately quantified by real-time PCR and digital PCR the BRCA2 isoforms retaining or missing exon 3. In addition, the combined odds ratio for causality of the variant was estimated using genetic and clinical data, and its associated cancer risk was estimated by case-control analysis in 83,636
individuals. Co-occurrence in trans with pathogenic BRCA2 variants was assessed in 5,382 families. Exon 3 exclusion rate was 4.5-fold higher in variant carriers (13%) than controls (3%), indicating an exclusion rate for the c.68-7T>A allele of approximately 20%. The posterior probability of pathogenicity was 7.44 x 10-115. There was neither evidence for
increased risk of breast cancer (OR 1.03; 95% CI 0.86-1.24), nor for a deleterious effect of the variant when co-occurring with pathogenic variants. Our data provide for the first time robust evidence of the non-pathogenicity of the BRCA2 c.68-7T>A. Genetic and quantitative
transcript analyses together inform the threshold for the ratio between functional and altered BRCA2 isoforms compatible with normal cell function. These findings might be exploited to assess the relevance for cancer risk of other BRCA2 spliceogenic variants
Chronic Systemic Dexamethasone Regulates the Mineralocorticoid/Glucocorticoid Pathways Balance in Rat Ocular Tissues
International audienceCentral serous chorioretinopathy (CSCR) is a retinal disease affecting the retinal pigment epithelium (RPE) and the choroid. This is a recognized side-effect of glucocorticoids (GCs), administered through nasal, articular, oral and dermal routes. However, CSCR does not occur after intraocular GCs administration, suggesting that a hypothalamic-pituitary-adrenal axis (HPA) brake could play a role in the mechanistic link between CSCR and GS. The aim of this study was to explore this hypothesis. To induce HPA brake, Lewis rats received a systemic injection of dexamethasone daily for five days. Control rats received saline injections. Baseline levels of corticosterone were measured by Elisa at baseline and at 5 days in the serum and the ocular media and dexamethasone levels were measured at 5 days in the serum and ocular media. The expression of genes encoding glucocorticoid receptor (GR), mineralocorticoid receptors (MR), and the 11 beta hydroxysteroid dehydrogenase (HSD) enzymes 1 and 2 were quantified in the neural retina and in RPE/ choroid. The expression of MR target genes was quantified in the retina (Scnn1A (encoding ENac-α, Kir4.1 and Aqp4) and in the RPE/choroid (Shroom 2, Ngal, Mmp9 and Omg, Ptx3, Plaur and Fosl-1). Only 10% of the corticosterone serum concentration was measured in the ocular media. Corticosterone levels in the serum and in the ocular media dropped after 5 days of dexamethasone systemic treatment, reflecting HPA axis brake. Whilst both GR and MR were downregulated in the retina without MR/GR imbalance, in the RPE/choroid, both MR/GR and 11β-hsd2/11β-hsd1 ratio increased, indicating MR pathway activation. MR-target genes were upregulated in the RPE/ choroid but not in the retina. The psychological stress induced by the repeated injection of saline also induced HPA axis brake with a trend towards MR pathway activation in RPE/ choroid. HPA axis brake causes an imbalance of corticoid receptors expression in the RPE/choroid towards overactivation of MR pathway, which could favor the occurrence of CSCR
Recommended from our members
Patient values in healthcare decision making among diverse older adults
To provide high-quality healthcare, it is essential to understand values that guide the healthcare decisions of older adults. We investigated the types of values that culturally diverse older adults incorporate in medical decision making.
Focus groups were held with older adults who varied in cognitive status (mildly impaired versus those with normal cognition) and ethnicity (Hispanic and non-Hispanic). Investigators used a qualitative descriptive approach to analyze transcripts and identify themes.
Forty-nine individuals (49% with cognitive impairment; 51% Hispanic) participated. Participants expressed a wide range of values relating to individual factors, familial/cultural beliefs and expectations, balancing risks and benefits, receiving decisional support, and considering values other than their own. Participants emphasized that values are individual-specific, influenced by aging, and change throughout life course. Participants described barriers and facilitators that interfere with or promote value solicitation and incorporation during medical encounters.
Study findings highlight that in older adults with various health experiences, cognitive and physical health status, and sociocultural backgrounds, medical decisions are influenced by a variety of values.
Clinicians should take time to elicit, understand, and reassess the different types of values of older adults.
•Older adults incorporate unique and multifaceted values in health decisions.•Values that influence medical decisions change with aging.•Values include consideration of familial roles and decisional support.•Older adults value quality of life and balance risks versus benefits
Comprehensive Assessment of BARD1 Messenger Ribonucleic Acid Splicing With Implications for Variant Classification
Introduction: Case–control analyses have shown BARD1 variants to be associated with up to >2-fold increase in risk of breast cancer, and potentially greater risk of triple negative breast cancer. BARD1 is included in several gene sequencing panels currently marketed for the prediction of risk of cancer, however there are no gene-specific guidelines for the classification of BARD1 variants. We present the most comprehensive assessment of BARD1 messenger RNA splicing, and demonstrate the application of these data for the classification of truncating and splice site variants according to American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines. Methods: Nanopore sequencing, short-read RNA-seq (whole transcriptome and targeted), and capillary electrophoresis analysis were performed by four laboratories to investigate alternative BARD1 splicing in blood, breast, and fimbriae/ovary related specimens from non-cancer affected tissues. Splicing data were also collated from published studies of nine different tissues. The impact of the findings for PVS1 annotation was assessed for truncating and splice site variants. Results: We identified 62 naturally occurring alternative spliced BARD1 splicing events, including 19 novel events found by next generation sequencing and/or reverse transcription PCR analysis performed for this study. Quantitative analysis showed that naturally occurring splicing events causing loss of clinically relevant domains or nonsense mediated decay can constitute up to 11.9% of overlapping natural junctions, suggesting that aberrant splicing can be tolerated up to this level. Nanopore sequencing of whole BARD1 transcripts characterized 16 alternative isoforms from healthy controls, revealing that the most complex transcripts combined only two alternative splicing events. Bioinformatic analysis of ClinVar submitted variants at or near BARD1 splice sites suggest that all consensus splice site variants in BARD1 should be considered likely pathogenic, with the possible exception of variants at the donor site of exon 5. Conclusions: No BARD1 candidate rescue transcripts were identified in this study, indicating that all premature translation-termination codons variants can be annotated as PVS1. Furthermore, our analysis suggests that all donor and acceptor (IVS+/−1,2) variants can be considered PVS1 or PVS1_strong, with the exception of variants targeting the exon 5 donor site, that we recommend considering as PVS1_moderate