772 research outputs found

    Static and dynamic properties of vortices in anisotropic magnetic disks

    Full text link
    We investigate the effect of the magnetic anisotropy (KzK_z) on the static and dynamic properties of magnetic vortices in small disks. Our micromagnetic calculations reveal that for a range of KzK_z there is an enlargement of the vortex core. We analyze the influence of KzK_z on the dynamics of the vortex core magnetization reversal under the excitation of a pulsed field. The presence of KzK_z, which leads to better resolved vortex structures, allows us to discuss in more details the role played by the in-plane and perpendicular components of the gyrotropic field during the vortex-antivortex nucleation and annihilation.Comment: 4 pages, 4 figure

    Phase diagram of the Kondo necklace: a mean-field renormalization group approach

    Full text link
    In this paper we investigate the magnetic properties of heavy fermions in the antiferromagnetic and dense Kondo phases in the framework of the Kondo necklace model. We use a mean field renormalization group approach to obtain a temperature versus Kondo coupling (T−J)(T-J) phase diagram for this model in qualitative agreement with Doniach's diagram, proposed on physical grounds. We further analyze the magnetically disordered phase using a two-sites approach. We calculate the correlation functions and the magnetic susceptibility that allow to identify the crossover between the spin-liquid and the local moment regimes, which occurs at a {\em coherence} temperature.Comment: 5 figure

    Controlled switching between paramagnetic and diamagnetic Meissner effect in Pb/Co nanocomposites

    Full text link
    A hybrid system which consists of a superconducting (SC) Pb film (100 nm thickness) containing ∼\sim1 vol% single domain ferromagnetic (FM) Co particles of mean-size ∼\sim4.5 nm reveal unusual magnetic properties: (i) a controlled switching between the usual diamagnetic and the unusual paramagnetic Meissner effect in field cooling as well as in zero-field cooling experiments (ii) amplification of the positive magnetization when the sample enters the SC state below Tc_c. These experimental findings can be explained by the formation of spontaneous vortices and the possible alignment of these vortices due to the foregoing alignment of the Co particle FM moments by an external magnetic field.Comment: 5 pages, 3 figure

    Experimental observation of quantum entanglement in low dimensional spin systems

    Full text link
    We report macroscopic magnetic measurements carried out in order to detect and characterize field-induced quantum entanglement in low dimensional spin systems. We analyze the pyroborate MgMnB_2O_5 and the and the warwickite MgTiOBO_3, systems with spin 5/2 and 1/2 respectively. By using the magnetic susceptibility as an entanglement witness we are able to quantify entanglement as a function of temperature and magnetic field. In addition, we experimentally distinguish for the first time a random singlet phase from a Griffiths phase. This analysis opens the possibility of a more detailed characterization of low dimensional materials

    150 INHIBITION OF CELL DEATH PREVENTS CARTILAGE DEGRADATION IN ACUTE TRAUMA MODEL

    Get PDF

    Anti-apoptotic treatments prevent cartilage degradation after acute trauma to human ankle cartilage

    Get PDF
    SummaryObjectivesTo investigate the effect of anti-apoptotic agents on cartilage degradation after a single impact to ankle cartilage.DesignTen human normal tali were impacted with the impulse of 1Ns generating peak forces in the range of 600N using a 4mm diameter indenter. Eight millimeter cartilage plugs containing the 4mm diameter impacted core and a 4mm adjacent ring were removed and cultured with or without P188 surfactant (8mg/ml), caspase-3 (10uM), or caspase-9 (2uM) inhibitors for 48h. Results were assessed in the superficial and middle-deep layers immediately after injury at day 0 and at 2, 7 and 14 days after injury by live/dead cell and Tunel assays and by histology with Safranin O/fast green staining.ResultsA single impact to human articular cartilage ex vivo resulted in cell death, cartilage degeneration, and radial progression of apoptosis to the areas immediately adjacent to the impact. The P188 was more effective in preventing cell death than the inhibitors of caspases. It reduced cell death by more than 2-fold (P<0.05) in the core and by about 30% in the ring in comparison with the impacted untreated control at all time points. P188 also prevented radial expansion of apoptosis in the ring region especially in the first 7 days post-impaction (7.5% Tunel-positive cells vs 46% in the untreated control; P<0.01). Inhibitors of caspase-3 or -9 were effective in reducing cell death in the impacted core only at early time points, but were ineffective in doing so in the ring. Mankin score was significantly improved in the P188 and caspase-3 treated groups.ConclusionsEarly intervention with the P188 and caspase-3 inhibitor may have therapeutic potential in the treatment of cartilage defects immediately after injury
    • …
    corecore