254 research outputs found

    Determination of ferroelectric compositional phase transition using novel virtual crystal approach

    Full text link
    We employ a new method for studying compositionally disordered ferroelectric oxides. This method is based on the virtual crystal approximation (VCA), in which two or more component potentials are averaged into a composite atomic potential. In our method, we construct a virtual atom with the correctly averaged atomic size and atomic eigenvalues. We have used our new method to study the composition dependent phase transition in Pb(Zr_{1-x}Ti_x)O_3 lying between x=0.5 and x=0.4. We correctly predict the experimentally determined phase transition from the tetragonal phase to a low-temperature rhombohedral phase between these two compositions.Comment: 7 pages, 2 figures, Proceedings for Fundamental Physics of Ferroelectrics, Aspen, CO February 13-20, 200

    Unique Quantum Stress Fields

    Full text link
    We have recently developed a geometric formulation of the stress field for an interacting quantum system within the local density approximation (LDA) of density functional theory (DFT). We obtain a stress field which is invariant with respect to choice of energy density. In this paper, we explicitly demonstrate this uniqueness by deriving the stress field for different energy densities. We also explain why particular energy densities give expressions for the stress field that are more tractable than others, thereby lending themselves more easily to first-principles calculations.Comment: To appear in Proceedings for Fundamental Physics of Ferroelectrics (2001
    • …
    corecore