60 research outputs found

    Microwave and Quantum Magnetics

    Get PDF
    Contains reports on two research projects.National Institutes of Health (Grant 5 PO1 CA31303

    Cross-Well Radar I: Experimental Simulation of Cross-Well Tomography and Validation

    Get PDF
    This paper explains and evaluates the potential and limitations of conducting Cross-Well Radar (CWR) in sandy soils. Implementing the experiment and data collection in the absence of any scattering object, and in the presence of an acrylic plate (a representative of dielectric objects, such as DNAPL (dense non-aqueous phase liquid) pools, etc.), as a contrasting object in a water-saturated soil is also studied. To be able to image the signature of any object, more than one pair of receiving and transmitting antennas are required. The paper describes a method to achieve repeatable, reliable, and reproducible laboratory results for different transmitter-receiver combinations. Different practical methods were evaluated for collecting multiple-depth data. Similarity of the corresponding results and problems involved in each method are studied and presented. The data show that the frequency response of a saturated coarse-grained soil is smooth due to the continuous and dominant nature of water in saturated soils. The repeatability and potential symmetry of patterns across some borehole axes provide a valuable tool for validation of experimental results. The potential asymmetry across other borehole axes is used as a tool to evaluate the strength of the perturbation on the electromagnetic field due to hidden objects and to evaluate the feasibility of detecting dielectric objects (such as DNAPL pools, etc.) using CWR. The experimental simulation designed for this paper models a real-life problem in a smaller scale, in a controlled laboratory environment, and within homogenous soils uniformly dry or fully water-saturated, with a uniform dielectric property contrast between the inclusion and background. The soil in the field will not be as homogenous and uniform. The scaling process takes into consideration that as the size is scaled down; the frequency needs to be scaled up. It is noteworthy that this scaling process needs to be extensively studied and validated for future extension of the models to real field applications. For example, to extend the outcome of this work to the real field, the geometry (antennas size, their separation and inclusion size) needs to be scaled up back to the field size, while soil grains will not scale up. Therefore, soil, water and air coupling effects and interactions observed at the laboratory scale do not scale up in the field, and may have different unforeseen effects that require extensive study

    Electromagnetic Waves in Contaminated Soils

    Get PDF
    Soil is a complex, potentially heterogeneous, lossy, and dispersive medium. Modeling the propagation and scattering of electromagnetic (EM) waves in soil is, hence, more challenging than in air or in other less complex media. This chapter will explain fundamentals of the numerical modeling of EM wave propagation and scattering in soil through solving Maxwell’s equations using a finite difference time domain (FDTD) method. The chapter will explain how: (i) the lossy and dispersive soil medium (in both dry and fully water-saturated conditions), (ii) a fourth phase (anomaly), (iii) two different types of transmitting antennae (a monopole and a dipole), and (iv) required absorbing boundary conditions can numerically be modeled. This is described through two examples that simulate the detection of DNAPL (dense nonaqueous-phase liquid) contamination in soil using Cross-well radar (CWR). CWR —otherwise known as cross-borehole GPR (ground penetrating radar)—modality was selected to eliminate the need for simulation of the roughness of the soil-air interface. The two examples demonstrate the scattering effect of a dielectric anomaly (representing a DNAPL pool) on the EM wave propagation through soil. The objective behind selecting these two examples is twofold: (i) explanation of the details and challenges of numerical modeling of EM wave propagation and scattering through soil for an actual problem (in this case, DNAPL detection), and (ii) demonstration of the feasibility of using EM waves for this actual detection problem

    Cross-Well Radar II: Comparison and Experimental Validation of Modeling Channel Transfer Function

    Get PDF
    Close agreement between theory and experiment is critical for adequate understanding and implementation of the Cross-Well Radar (CWR, otherwise known as Cross-Borehole Ground Penetrating Radar) technique, mentioned in a previous paper by the authors. Comparison of experimental results to simulation using a half-space dyadic Green’s function in the frequency domain requires development of transfer functions to transform the experimental data into a compatible form. A Channel Transfer Function (CTF) was developed to avoid having to model the transmitting and receiving characteristics of the antennas. The CTF considers electromagnetic (EM) wave propagation through the intervening media only (soil in this case), and hence corresponds to the simulation results that assume ideal sources and receivers. The CTF is based on assuming the transmitting antenna, soil, and receiving antenna as a cascade of three two-port microwave junctions between the input and output ports of the Vector Network Analyzer (VNA) used in the experimental measurements. Experimentally determined CTF results are then compared with computational model simulations for cases of relatively dry and saturated sandy soil backgrounds. The results demonstrate a reasonable agreement, supporting both the model and CTF formulation

    Experimental Validation of a Numerical Forward Model for Tunnel Detection Using Cross-Borehole Radar

    Get PDF
    The goal of this research is to develop an experimentally validated twodimensional (2D) finite difference frequency domain (FDFD) numerical forward model to study the potential of radar-based tunnel detection. Tunnel detection has become a subject of interest to the nation due to the use of tunnels by illegal immigrants, smugglers, prisoners, assailants, and terrorists. These concerns call for research to nondestructively detect, localize, and monitor tunnels. Nondestructive detection requires robust image reconstruction and inverse models, which in turn need robust forward models. Cross-Well Radar (CWR) modality is used for experimentation to avoid soil-air interface roughness. CWR is not a versatile field technology for political boundaries but is still applicable to monitoring the perimeter of buildings or secure sites. Multiple-depth wideband frequency-response measurements are experimentally collected in fully water-saturated sand, across PVC-cased ferrite-bead-jacketed borehole monopole antennae at a pilot scale facility (referred to as SoilBED). The experimental results are then compared with the 2D-FDFD model. The agreement between the results of the numerical and experimental simulations is then evaluated. Results of this work provide key diagnostic tools that can help to develop the algorithms needed for the detection of underground tunnels using radar-based methods

    Microwave and Quantum Magnetics

    Get PDF
    Contains research objectives and reports on five research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)National Institutes of Health (Grant 1 P01 CA3 1303-01

    Microwave and Quantum Magnetics

    Get PDF
    Contains research objectives and reports on five research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)National Institutes of Health (Grant 1 P01 CA3 1303-01

    On the use of compressed sensing techniques for improving multistatic millimeter-wave portal-based personnel screening

    Get PDF
    This work develops compressed sensing techniques to improve the performance of an active three dimensional (3D) millimeter wave imaging system for personnel security screening. The system is able to produce a high-resolution 3D reconstruction of the whole human body surface and reveal concealed objects under clothing. Innovative multistatic millimeter wave radar designs and algorithms, which have been previously validated, are combined to improve the reconstruction results over previous approaches. Compressed Sensing techniques are used to drastically reduce the number of sensors, thus simplifying the system design and fabrication. Representative simulation results showing good performance of the proposed system are provided and supported by several sample measurement
    corecore