15 research outputs found
Use of Schizosaccharomyces strains for wine fermentation? Effect on the wine composition and food safety
Schizosaccharomyceswas initially considered as a spoilage yeast because of the production of undesirable metabolites such as acetic acid, hydrogen sulfide, or acetaldehyde, but it currently seems to be of great value in enology.o ced Nevertheless, Schizosaccharomyces can reduce all of the malic acid in must, leading to malolactic fermentation. Malolactic fermentation is a highly complicated process in enology and leads to a higher concentration of biogenic amines, so the use of Schizosaccharomyces pombe can be an excellent tool for assuring wine safety. Schizosaccharomyces also has much more potential than only reducing the malic acid content, such as increasing the level of pyruvic acid and thus the vinylphenolic pyranoanthocyanin content. Until now, few commercial strains have been available and little research on the selection of appropriate yeast strains with such potential has been conducted. In this study, selected and wild Sc. pombe strains were used along with a Saccharomyces cerevisiae strain to ferment red grape must. The results showed significant differences in several parameters including non-volatile and volatile compounds, anthocyanins, biogenic amines and sensory parameters
Effects on varietal aromas during wine making: a review of the impact of varietal aromas on the flavor of wine
Although there are many chemical compounds present in wines, only a few of these compounds contribute to the sensory perception of wine flavor. This review focuses on the knowledge regarding varietal aroma compounds, which are among the compounds that are the greatest contributors to the overall aroma. These aroma compounds are found in grapes in the form of nonodorant precursors that, due to the metabolic activity of yeasts during fermentation, are transformed to aromas that are of great relevance in the sensory perception of wines. Due to the multiple interactions of varietal aromas with other types of aromas and other nonodorant components of the complex wine matrix, knowledge regarding the varietal aroma composition alone cannot adequately explain the contribution of these compounds to the overall wine flavor. These interactions and the associated effects on aroma volatility are currently being investigated. This review also provides an overview of recent developments in analytical techniques for varietal aroma identification, including methods used to identify the precursor compounds of varietal aromas, which are the greatest contributors to the overall aroma after the aforementioned yeast-mediated odor release
Pollen-monitoring: Between Analyst Proficiency Testing
This study presents the results of a Europe-wide training and Quality Control (QC) exercise carried out within the framework of the European Aerobiology Society’s QC Working Group and European COST Action FA1203 entitled “sustainable management of Ambrosia artemisiifolia in Europe (SMARTER)” with the aim of ensuring that pollen counters in Europe are confident in the identification of Ambrosia pollen grains. A total of 69 analysts from 20 countries examined a test slide by light microscopy, which contained Ambrosia pollen and pollen from other Asteraceae that could be recorded in the atmosphere at the same time of year (i.e. Artemisia, Iva, and Xanthium). Daily average pollen concentrations produced by individual participants were compared with the assigned value and the bias was measured by z-score. Both the assigned value and standard deviation for proficiency testing were calculated following the consensus value principle (ISO13528:2005) from the results reported by all the participants in the test. It took a total of 531 days from when the exercise commenced until all 69 analysts reported their results. The most outliers were reported for Artemisia pollen concentrations followed by Xanthium and Iva. The poor results for Artemisia and Xanthium were probably caused by low concentrations on the test slide leading to larger bias due to the unequal distribution of pollen over the microscope slide. Participants performed the best in identifying and quantifying Ambrosia pollen. Performing inter-laboratory ring tests with the same sample is very time consuming and might not be appropriate for large-scale proficiency testing in aerobiology. Pollen with similar morphology should be included in the education process of aerobiologists