278 research outputs found
Diet during early life defines testicular lipid content and sperm quality in adulthood
Childhood obesity is a serious concern associated with ill health later in life. Emerging data suggest that obesity has long-term adverse effects upon male sexual and reproductive health but few studies addressed this issue. We hypothesized that exposure to high-fat diet during early life alters testicular lipid content and metabolism leading to permanent damage to sperm parameters. After weaning (day 21 after birth), 36 male mice were randomly divided into 3 groups and fed with different diet regimen for 200 days: CTRL-standard chow; HFD-high-fat diet (Carbohydrate: 35.7%, Protein: 20.5%, Fat: 36.0%); HFDt-high-fat diet for 60 days then replaced by standard chow. Biometric and metabolic data were monitored. Animals were then sacrificed, and tissues collected. Epididymal sperm parameters and endocrine parameters were evaluated. Testicular metabolites were extracted and characterized by 1H-NMR and GC-MS. Testicular mitochondrial and antioxidant activity were evaluated. Our results show that mice fed with high-fat diet, even if only until early adulthood, had lower sperm viability and motility, and higher incidence of head and tail defects. Although diet reversion with weight loss during adulthood prevents the progression of metabolic syndrome, testicular content in fatty acids is irreversibly affected. Excessive fat intake promoted an over-accumulation of pro-inflammatory n-6 polyunsaturated fatty acids in testis, which are strongly correlated with negative effects upon sperm quality. Therefore, the adoption of high-fat diets during early life correlates to irreversible changes in testicular lipid content and metabolism, which are related to permanent damage to sperm quality later in life
Language Comprehension in the Balance: The Robustness of the Action-Compatibility Effect (ACE)
How does language comprehension interact with motor activity? We investigated the conditions under which comprehending an action sentence affects people's balance. We performed two experiments to assess whether sentences describing forward or backward movement modulate the lateral movements made by subjects who made sensibility judgments about the sentences. In one experiment subjects were standing on a balance board and in the other they were seated on a balance board that was mounted on a chair. This allowed us to investigate whether the action compatibility effect (ACE) is robust and persists in the face of salient incompatibilities between sentence content and subject movement. Growth-curve analysis of the movement trajectories produced by the subjects in response to the sentences suggests that the ACE is indeed robust. Sentence content influenced movement trajectory despite salient inconsistencies between implied and actual movement. These results are interpreted in the context of the current discussion of embodied, or grounded, language comprehension and meaning representation
Inherited Metabolic Memory of High-Fat Diet Impairs Testicular Fatty Acid Content and Sperm Parameters
Scope Exposure to a high-fat diet (HFD) from early-life is associated with a testicular metabolic signature link to abnormal sperm parameters up to two generations after exposure in mice. Hereby, this study describes a testicular lipid signature associate with "inherited metabolic memory" of exposure to HFD, persisting up to two generations in mice. Methods and Results Diet-challenged mice (n = 36) are randomly fed after weaning with standard chow (CTRL); HFD for 200 days or transient HFD (HFDt) (60 days of HFD + 140 days of standard chow). Subsequent generations (36 mice per generation) are fed with chow diet. Mice are euthanized 200 days post-weaning. Glucose homeostasis, serum hormones, testicular bioenergetics, and antioxidant enzyme activity are evaluated. Testicular lipid-related metabolites and fatty acids are characterized by H-1-NMR and GC-MS. Sons of HFD display impaired choline metabolism, mitochondrial activity, and antioxidant defenses, while grandsons show a shift in testicular omega 3/omega 6 ratio towards a pro-inflammatory environment. Grandsons of HFDt raise 3-hydroxybutyrate levels with possible implications to testicular insulin resistance. Sperm counts decrease in grandsons of HFD-exposed mice, regardless of the duration of exposure. Conclusion HFD-induced "inherited metabolic memory" alters testicular fatty acid metabolism with consequences to sperm parameters up to two generations
Grip Force Reveals the Context Sensitivity of Language-Induced Motor Activity during “Action Words
Studies demonstrating the involvement of motor brain structures in language processing typically focus on \ud
time windows beyond the latencies of lexical-semantic access. Consequently, such studies remain inconclusive regarding whether motor brain structures are recruited directly in language processing or through post-linguistic conceptual imagery. In the present study, we introduce a grip-force sensor that allows online measurements of language-induced motor activity during sentence listening. We use this tool to investigate whether language-induced motor activity remains constant or is modulated in negative, as opposed to affirmative, linguistic contexts. Our findings demonstrate that this simple experimental paradigm can be used to study the online crosstalk between language and the motor systems in an ecological and economical manner. Our data further confirm that the motor brain structures that can be called upon during action word processing are not mandatorily involved; the crosstalk is asymmetrically\ud
governed by the linguistic context and not vice versa
Diet during early life defines testicular lipid content and sperm quality in adulthood
Childhood obesity is a serious concern associated with ill health later in life. Emerging data suggest that obesity has long-term adverse effects upon male sexual and reproductive health, but few studies have addressed this issue. We hypothesized that exposure to high-fat diet during early life alters testicular lipid content and metabolism, leading to permanent damage to sperm parameters. After weaning (day 21 after birth), 36 male mice were randomly divided into three groups and fed with a different diet regimen for 200 days: a standard chow diet (CTRL), a high-fat diet (HFD) (carbohydrate: 35.7%, protein: 20.5%, and fat: 36.0%), and a high-fat diet for 60 days, then replaced by standard chow (HFDt). Biometric and metabolic data were monitored. Animals were then euthanized, and tissues were collected. Epididymal sperm parameters and endocrine parameters were evaluated. Testicular metabolites were extracted and characterized by 1H-NMR and GC-MS. Testicular mitochondrial and antioxidant activity were evaluated. Our results show that mice fed with a high-fat diet, even if only until early adulthood, had lower sperm viability and motility, and higher incidence of head and tail defects. Although diet reversion with weight loss during adulthood prevents the progression of metabolic syndrome, testicular content in fatty acids is irreversibly affected. Excessive fat intake promoted an overaccumulation of proinflammatory n-6 polyunsaturated fatty acids in the testis, which is strongly correlated with negative effects upon sperm quality. Therefore, the adoption of high-fat diets during early life correlates with irreversible changes in testicular lipid content and metabolism, which are related to permanent damage to sperm quality later in life
Histone deacetylases as new therapy targets for platinum-resistant epithelial ovarian cancer
Introduction: In developed countries, ovarian cancer is the fourth most common cancer in women. Due to the nonspecific symptomatology associated with the disease many patients with ovarian cancer are diagnosed late, which leads to significantly poorer prognosis. Apart from surgery and radiotherapy, a substantial number of ovarian cancer patients will undergo chemotherapy and platinum based agents are the mainstream first-line therapy for this disease. Despite the initial efficacy of these therapies, many women relapse; therefore, strategies for second-line therapies are required. Regulation of DNA transcription is crucial for tumour progression, metastasis and chemoresistance which offers potential for novel drug targets. Methods: We have reviewed the existing literature on the role of histone deacetylases, nuclear enzymes regulating gene transcription. Results and conclusion: Analysis of available data suggests that a signifant proportion of drug resistance stems from abberant gene expression, therefore HDAC inhibitors are amongst the most promising therapeutic targets for cancer treatment. Together with genetic testing, they may have a potential to serve as base for patient-adapted therapies
Zigzag Turning Preference of Freely Crawling Cells
The coordinated motion of a cell is fundamental to many important biological
processes such as development, wound healing, and phagocytosis. For eukaryotic
cells, such as amoebae or animal cells, the cell motility is based on crawling
and involves a complex set of internal biochemical events. A recent study
reported very interesting crawling behavior of single cell amoeba: in the
absence of an external cue, free amoebae move randomly with a noisy, yet,
discernible sequence of ‘run-and-turns’ analogous to the
‘run-and-tumbles’ of swimming bacteria. Interestingly, amoeboid
trajectories favor zigzag turns. In other words, the cells bias their crawling
by making a turn in the opposite direction to a previous turn. This property
enhances the long range directional persistence of the moving trajectories. This
study proposes that such a zigzag crawling behavior can be a general property of
any crawling cells by demonstrating that 1) microglia, which are the immune
cells of the brain, and 2) a simple rule-based model cell, which incorporates
the actual biochemistry and mechanics behind cell crawling, both exhibit similar
type of crawling behavior. Almost all legged animals walk by alternating their
feet. Similarly, all crawling cells appear to move forward by alternating the
direction of their movement, even though the regularity and degree of zigzag
preference vary from one type to the other
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Neuronal lysosomal dysfunction releases exosomes harboring APP C-terminal fragments and unique lipid signatures
Defects in endolysosomal and autophagic functions are increasingly viewed as key pathological features of neurodegenerative disorders. A master regulator of these functions is phosphatidylinositol-3-phosphate (PI3P), a phospholipid synthesized primarily by class III PI 3-kinase Vps34. Here we report that disruption of neuronal Vps34 function in vitro and in vivo impairs autophagy, lysosomal degradation as well as lipid metabolism, causing endolysosomal membrane damage. PI3P deficiency also promotes secretion of unique exosomes enriched for undigested lysosomal substrates, including amyloid precursor protein C-terminal fragments (APP-CTFs), specific sphingolipids, and the phospholipid bis(monoacylglycero)phosphate (BMP), which normally resides in the internal vesicles of endolysosomes. Secretion of these exosomes requires neutral sphingomyelinase 2 and sphingolipid synthesis. Our results reveal a homeostatic response counteracting lysosomal dysfunction via secretion of atypical exosomes eliminating lysosomal waste and define exosomal APP-CTFs and BMP as candidate biomarkers for endolysosomal dysfunction associated with neurodegenerative disorders.Fan Wang for the kind gift of the Pi3kc3flox/flox mice. We thank Basant Abdulrahman and Hermann Schaetzl for providing the gene-edited Atg5 KO N2a cells. We are also grateful to Zhenyu Yue, Ralph Nixon, and Jean Gruenberg for the kind gift of anti-Atg14L, Cathepsin D, and BMP antibodies, respectively. We thank Thomas Südhof for sharing Cre recombinase lentiviruses. We thank the OCS Microscopy Core of New York University Langone Medical Center for the support of the EM work and Rocio Perez-Gonzalez and Efrat Levy of New York University for their support during optimization of the brain exosome isolation technique. We thank Elizabeta Micevska for the maintenance and genotyping of the animal colony and Bowen Zhou for the preliminary lipidomic analysis of conditional Pi3kc3 cKO mice. We also thank Rebecca Williams and Catherine Marquer for critically reading the manuscript. This work was supported by grants from the Fundação para a Ciência e Tecnologia (PD/BD/105915/2014 to A.M.M.); the National Institute of Health (R01 NS056049 to G.D.P., transferred to Ron Liem, Columbia University; T32-MH015174 to Rene Hen (Z.M.L.)). Z.M.L. and R.B.C. received pilot grants from ADRC grant P50 AG008702 to S.A.S.info:eu-repo/semantics/publishedVersio
Brugia malayi Antigen (BmA) inhibits HIV-1 trans-infection but neither BmA nor ES-62 alter HIV-1 infectivity of DC induced CD4+ Th-cells
One of the hallmarks of HIV-1 disease is the association of heightened CD4+ T-cell activation with HIV-1 replication. Parasitic helminths including filarial nematodes have evolved numerous and complex mechanisms to skew, dampen and evade human immune responses suggesting that HIV-1 infection may be modulated in co-infected individuals. Here we studied the effects of two filarial nematode products, adult worm antigen from Brugia malayi (BmA) and excretory-secretory product 62 (ES-62) from Acanthocheilonema viteae on HIV-1 infection in vitro. Neither BmA nor ES-62 influenced HIV-1 replication in CD4+ enriched T-cells, with either a CCR5- or CXCR4-using virus. BmA, but not ES-62, had the capacity to bind the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) thereby inhibiting HIV-1 trans-infection of CD4+ enriched T-cells. As for their effect on DCs, neither BmA nor ES-62 could enhance or inhibit DC maturation as determined by CD83, CD86 and HLA-DR expression, or the production of IL-6, IL-10, IL-12 and TNF-α. As expected, due to the unaltered DC phenotype, no differences were found in CD4+ T helper (Th) cell phenotypes induced by DCs treated with either BmA or ES-62. Moreover, the HIV-1 susceptibility of the Th-cell populations induced by BmA or ES-62 exposed DCs was unaffected for both CCR5- and CXCR4-using HIV-1 viruses. In conclusion, although BmA has the potential capacity to interfere with HIV-1 transmission or initial viral dissemination through preventing the virus from interacting with DCs, no differences in the Th-cell polarizing capacity of DCs exposed to BmA or ES-62 were observed. Neither antigenic source demonstrated beneficial or detrimental effects on the HIV-1 susceptibility of CD4+ Th-cells induced by exposed DCs
- …