5 research outputs found

    SARS-CoV-2 Amino Acid Mutations Detection in Greek Patients Infected in the First Wave of the Pandemic

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel virus that belongs to the Coronoviridae family, emerged in December 2019, causing the COVID-19 pandemic in March 2020. Unlike previous SARS and Middle East respiratory syndrome (MERS) outbreaks, this virus has a higher transmissibility rate, albeit a lower case fatality rate, which results in accumulation of a significant number of mutations and a faster evolution rate. Genomic studies on the mutation rate of the virus, as well as the identification of mutations that prevail and their impact on disease severity, are of great importance for pandemic surveillance and vaccine and drug development. Here, we aim to identify mutations on the SARS-CoV-2 viral genome and their effect on the proteins they are located in, in Greek patients infected in the first wave of the pandemic. To this end, we perform SARS-CoV-2 amplicon-based NGS sequencing on nasopharyngeal swab samples from Greek patients and bioinformatic analysis of the results. Although SARS-CoV-2 is considered genetically stable, we discover a variety of mutations on the viral genome. In detail, 18 mutations are detected in total on 10 SARS-CoV-2 isolates. The mutations are located on ORF1ab, S protein, M protein, ORF3a and ORF7a. Sixteen are also detected in patients from other regions around the world, and two are identified for the first time in the present study. Most of them result in amino acid substitutions. These substitutions are analyzed using computational tools, and the results indicate minor or major impact on the proteins’ structural stability, which could probably affect viral transmissibility and pathogenesis. The correlation of these variations with the viral load levels is examined, and their implication for disease severity and the biology of the virus are discussed

    Dengue Virus Replication Is Associated with Catecholamine Biosynthesis and Metabolism in Hepatocytes

    No full text
    Previously, the association between the catecholamine biosynthetic enzyme L-Dopa decarboxylase (DDC) and Dengue virus (DV) replication was demonstrated in liver cells and was found to be mediated at least by the interaction between DDC and phosphoinositide 3-kinase (PI3K). Here, we show that biogenic amines production and uptake impede DV replication in hepatocytes and monocytes, while the virus reduces catecholamine biosynthesis, metabolism, and transport. To examine how catecholamine biosynthesis/metabolism influences DV, first, we verified the role of DDC by altering DDC expression. DDC silencing enhanced virus replication, but not translation, attenuated the negative effect of DDC substrates on the virus and reduced the infection related cell death. Then, the role of the downstream steps of the catecholamine biosynthesis/metabolism was analyzed by chemical inhibition of the respective enzymes, application of their substrates and/or their products; moreover, reserpine, the inhibitor of the vesicular monoamine transporter 2 (VMAT2), was used to examine the role of uptake/storage of catecholamines on DV. Apart from the role of each enzyme/transporter, these studies revealed that the dopamine uptake, and not the dopamine-signaling, is responsible for the negative effect on DV. Accordingly, all treatments expected to enhance the accumulation of catecholamines in the cell cytosol suppressed DV replication. This was verified by the use of chemical inducers of catecholamine biosynthesis. Last, the cellular redox alterations due to catecholamine oxidation were not related with the inhibition of DV replication. In turn, DV apart from its negative impact on DDC, inhibits tyrosine hydroxylase, dopamine beta-hydroxylase, monoamine oxidase, and VMAT2 expression

    Characterizing Kinetics and Avidity of SARS-CoV-2 Antibody Responses in COVID-19 Greek Patients

    No full text
    In-depth understanding of the immune response provoked by SARS-CoV-2 infection is necessary, as there is a great risk of reinfection and a difficulty in achieving herd immunity due to a decline in both antibody concentration and avidity. Avidity testing, however, could overcome variability in the immune response associated with sex or clinical symptoms, and thus differentiate between recent and past infections. In this context, here, we analyzed SARS-CoV-2 antibody kinetics and avidity in Greek hospitalized (26%) and non-hospitalized (74%) COVID-19 patients (N = 71) in the course of up to 15 months after their infection to improve the accuracy of the serological diagnosis in dating the onset of the infection. The results showed that IgG-S1 levels decline significantly at four months (p = 0.0239) in both groups of patients and are higher in hospitalized ones (up to 2.1-fold, p < 0.001). Additionally, hospitalized patients’ titers drop greatly and are equalized to non-hospitalized ones only at a time-point of twelve to fifteen months. Antibody levels of women in total remain more stable months after infection, compared to men. Furthermore, we examined the differential maturation of IgG avidity after SARS-CoV-2 infection, showing an incomplete maturation of avidity that results in a plateau at four months after infection. We also defined 38.2% avidity (sensitivity: 58.9%, specificity: 90.91%) as an appropriate “cut-off” that could be used to determine the stage of infection before avidity reaches a plateau

    Characterizing Kinetics and Avidity of SARS-CoV-2 Antibody Responses in COVID-19 Greek Patients

    No full text
    In-depth understanding of the immune response provoked by SARS-CoV-2 infection is necessary, as there is a great risk of reinfection and a difficulty in achieving herd immunity due to a decline in both antibody concentration and avidity. Avidity testing, however, could overcome variability in the immune response associated with sex or clinical symptoms, and thus differentiate between recent and past infections. In this context, here, we analyzed SARS-CoV-2 antibody kinetics and avidity in Greek hospitalized (26%) and non-hospitalized (74%) COVID-19 patients (N = 71) in the course of up to 15 months after their infection to improve the accuracy of the serological diagnosis in dating the onset of the infection. The results showed that IgG-S1 levels decline significantly at four months (p = 0.0239) in both groups of patients and are higher in hospitalized ones (up to 2.1-fold, p &lt; 0.001). Additionally, hospitalized patients&rsquo; titers drop greatly and are equalized to non-hospitalized ones only at a time-point of twelve to fifteen months. Antibody levels of women in total remain more stable months after infection, compared to men. Furthermore, we examined the differential maturation of IgG avidity after SARS-CoV-2 infection, showing an incomplete maturation of avidity that results in a plateau at four months after infection. We also defined 38.2% avidity (sensitivity: 58.9%, specificity: 90.91%) as an appropriate &ldquo;cut-off&rdquo; that could be used to determine the stage of infection before avidity reaches a plateau
    corecore