274 research outputs found
Overlapping Schwarz methods for Fekete and Gauss-Lobatto spectral elements
The classical overlapping Schwarz algorithm is here extended to the triangular/tetrahedral spectral element (TSEM) discretization of elliptic problems. This discretization, based on Fekete nodes, is a generalization to nontensorial elements of the tensorial Gauss–Lobatto–Legendre quadrilateral spectral elements (QSEM). The overlapping Schwarz preconditioners are based on partitioning the domain of the problem into overlapping subdomains, solving local problems on these subdomains, and solving an additional coarse problem associated with either the subdomain mesh or the spectral element mesh. The overlap size is generous, i.e., one element wide, in the TSEM case, while it is minimal or variable in the QSEM case. The results of several numerical experiments show that the convergence rate of the proposed preconditioning algorithm is independent of the number of subdomains and the spectral degree in case of generous overlap; otherwise it depends inversely on the overlap size. The proposed preconditioners are also robust with respect to arbitrary jumps of the coefficients of the elliptic operator across subdomains
Work-life interferences in the early academic career stages: The case of precarious researchers in Italy
This paper addresses the topic of work–life interferences in academic contexts. More specifically, it focuses on early career researchers in the Italian university system. The total availability required from those who work in the research sector is leading to significant transformations of the temporalities of work, especially among the new generation of researchers, whose condition is characterized by a higher degree of instability and uncertainty. Which are the experiences of the early career researchers in an academic context constituted by a growing competition for permanent positions and, as a consequence, by a greatly increased pressure? Which are the main gender differences? In what elements do Science, Technology, Engineering and Mathematics disciplines differ from Social Sciences and Humanities? The collected narratives reveal how the ongoing process of precarization is affecting both the everyday working activities and the private and family lives of early career researchers, with important consequences also on their future prospects
The CDM growth rate of structure revisited
We re-examine the growth index of the concordance cosmology in the
light of the latest 6dF and {\em WiggleZ} data. In particular, we investigate
five different models for the growth index , by comparing their
cosmological evolution using observational data of the growth rate of structure
formation at different redshifts. Performing a joint likelihood analysis of the
recent supernovae type Ia data, the Cosmic Microwave Background shift
parameter, Baryonic Acoustic Oscillations and the growth rate data, we
determine the free parameters of the parametrizations and we
statistically quantify their ability to represent the observations. We find
that the addition of the 6dF and {\em WiggleZ} growth data in the likelihood
analysis improves significantly the statistical results. As an example,
considering a constant growth index we find and
.Comment: 8 pages, 5 figures, Accepted for publication by International J. of
Modern Physics D (IJMPD). arXiv admin note: substantial text overlap with
arXiv:1203.672
Cosmology and astrophysics from relaxed galaxy clusters - IV: Robustly calibrating hydrostatic masses with weak lensing
This is the fourth in a series of papers studying the astrophysics and
cosmology of massive, dynamically relaxed galaxy clusters. Here, we use
measurements of weak gravitational lensing from the Weighing the Giants project
to calibrate Chandra X-ray measurements of total mass that rely on the
assumption of hydrostatic equilibrium. This comparison of X-ray and lensing
masses provides a measurement of the combined bias of X-ray hydrostatic masses
due to both astrophysical and instrumental sources. Assuming a fixed cosmology,
and within a characteristic radius (r_2500) determined from the X-ray data, we
measure a lensing to X-ray mass ratio of 0.96 +/- 9% (stat) +/- 9% (sys). We
find no significant trends of this ratio with mass, redshift or the
morphological indicators used to select the sample. In accordance with
predictions from hydro simulations for the most massive, relaxed clusters, our
results disfavor strong, tens-of-percent departures from hydrostatic
equilibrium at these radii. In addition, we find a mean concentration of the
sample measured from lensing data of c_200 = . Anticipated
short-term improvements in lensing systematics, and a modest expansion of the
relaxed lensing sample, can easily increase the measurement precision by
30--50%, leading to similar improvements in cosmological constraints that
employ X-ray hydrostatic mass estimates, such as on Omega_m from the cluster
gas mass fraction.Comment: 13 pages. Submitted to MNRAS. Comments welcom
Cosmology and Astrophysics from Relaxed Galaxy Clusters II: Cosmological Constraints
We present cosmological constraints from measurements of the gas mass
fraction, , for massive, dynamically relaxed galaxy clusters. Our data
set consists of Chandra observations of 40 such clusters, identified in a
comprehensive search of the Chandra archive, as well as high-quality weak
gravitational lensing data for a subset of these clusters. Incorporating a
robust gravitational lensing calibration of the X-ray mass estimates, and
restricting our measurements to the most self-similar and accurately measured
regions of clusters, significantly reduces systematic uncertainties compared to
previous work. Our data for the first time constrain the intrinsic scatter in
, % in a spherical shell at radii 0.8-1.2 ,
consistent with the expected variation in gas depletion and non-thermal
pressure for relaxed clusters. From the lowest-redshift data in our sample we
obtain a constraint on a combination of the Hubble parameter and cosmic baryon
fraction, , that is insensitive to the
nature of dark energy. Combined with standard priors on and ,
this provides a tight constraint on the cosmic matter density,
, which is similarly insensitive to dark energy. Using
the entire cluster sample, extending to , we obtain consistent results for
and interesting constraints on dark energy:
for non-flat CDM models, and
for flat constant- models. Our results are both competitive
and consistent with those from recent CMB, SNIa and BAO data. We present
constraints on models of evolving dark energy from the combination of
data with these external data sets, and comment on the possibilities for
improved constraints using current and next-generation X-ray
observatories and lensing data. (Abridged)Comment: 25 pages, 14 figures, 8 tables. Accepted by MNRAS. Code and data can
be downloaded from http://www.slac.stanford.edu/~amantz/work/fgas14/ . v2:
minor fix to table 1, updated bibliograph
Dynamical dark energy: Current constraints and forecasts
We consider how well the dark energy equation of state as a function of
red shift will be measured using current and anticipated experiments. We
use a procedure which takes fair account of the uncertainties in the functional
dependence of on , as well as the parameter degeneracies, and avoids the
use of strong prior constraints. We apply the procedure to current data from
WMAP, SDSS, and the supernova searches, and obtain results that are consistent
with other analyses using different combinations of data sets. The effects of
systematic experimental errors and variations in the analysis technique are
discussed. Next, we use the same procedure to forecast the dark energy
constraints achieveable by the end of the decade, assuming 8 years of WMAP data
and realistic projections for ground-based measurements of supernovae and weak
lensing. We find the constraints on the current value of to be
, and on (between and ) to be
. Finally, we compare these limits to other
projections in the literature. Most show only a modest improvement; others show
a more substantial improvement, but there are serious concerns about
systematics. The remaining uncertainty still allows a significant span of
competing dark energy models. Most likely, new kinds of measurements, or
experiments more sophisticated than those currently planned, are needed to
reveal the true nature of dark energy.Comment: 24 pages, 20 figures. Added SN systematic uncertainties, extended
discussio
Combining cluster observables and stacked weak lensing to probe dark energy: Self-calibration of systematic uncertainties
We develop a new method of combining cluster observables (number counts and
cluster-cluster correlation functions) and stacked weak lensing signals of
background galaxy shapes, both of which are available in a wide-field optical
imaging survey. Assuming that the clusters have secure redshift estimates, we
show that the joint experiment enables a self-calibration of important
systematic errors including the source redshift uncertainty and the cluster
mass-observable relation, by adopting a single population of background source
galaxies for the lensing analysis. It allows us to use the relative strengths
of stacked lensing signals at different cluster redshifts for calibrating the
source redshift uncertainty, which in turn leads to accurate measurements of
the mean cluster mass in each bin. In addition, our formulation of stacked
lensing signals in Fourier space simplifies the Fisher matrix calculations, as
well as the marginalization over the cluster off-centering effect, the most
significant uncertainty in stacked lensing. We show that upcoming wide-field
surveys yield stringent constraints on cosmological parameters including dark
energy parameters, without any priors on nuisance parameters that model
systematic uncertainties. Specifically, the stacked lensing information
improves the dark energy FoM by a factor of 4, compared to that from the
cluster observables alone. The primordial non-Gaussianity parameter can also be
constrained with a level of f_NL~10. In this method, the mean source redshift
is well calibrated to an accuracy of 0.1 in redshift, and the mean cluster mass
in each bin to 5-10% accuracies, which demonstrates the success of the
self-calibration of systematic uncertainties from the joint experiment.
(Abridged)Comment: 29 pages, 17 figures, 6 tables, accepted for publication in Phys.
Rev.
- …