4 research outputs found
Plum pudding random medium model of biological tissue toward remote microscopy from spectroscopic light scattering
Biological tissue has a complex structure and exhibits rich spectroscopic
behavior. There is \emph{no} tissue model up to now able to account for the
observed spectroscopy of tissue light scattering and its anisotropy. Here we
present, \emph{for the first time}, a plum pudding random medium (PPRM) model
for biological tissue which succinctly describes tissue as a superposition of
distinctive scattering structures (plum) embedded inside a fractal continuous
medium of background refractive index fluctuation (pudding). PPRM faithfully
reproduces the wavelength dependence of tissue light scattering and attributes
the "anomalous" trend in the anisotropy to the plum and the powerlaw dependence
of the reduced scattering coefficient to the fractal scattering pudding. Most
importantly, PPRM opens up a novel venue of quantifying the tissue architecture
and microscopic structures on average from macroscopic probing of the bulk with
scattered light alone without tissue excision. We demonstrate this potential by
visualizing the fine microscopic structural alterations in breast tissue
(adipose, glandular, fibrocystic, fibroadenoma, and ductal carcinoma) deduced
from noncontact spectroscopic measurement
Spatio-temporal ALS cluster in the Hérault district.
<p>This cluster (dark grey area) is composed of 26 townships and has been identified for the period between January 1992 and December 2009, with 68 ALS cases for 33.7 expected (SIR = 2.02, RR = 2.24, p = 0.0024). </p
Seasonal variations of the picophytoplankton community in Thau lagoon from March 2009 until February 2010.
<p>Circles: picocyanobacteria; triangle: picoeukaryotes; black: inside the farming zone, open: outside the farming zone.</p
SIR evolution in the Hérault district according to the distance from cluster 1.
<p>Maximum SIR is noted in cluster 1 and decreases rapidly when increasing the distance from this epicentre. Significance is p = 0.025, Stone's test for raised incidence around locations. Type of boots: parametric. Model used when sampling: Poisson. Number of simulations: 999. Statistic: 2.19325.</p