165 research outputs found

    Fast MCMC sampling for Markov jump processes and extensions

    Full text link
    Markov jump processes (or continuous-time Markov chains) are a simple and important class of continuous-time dynamical systems. In this paper, we tackle the problem of simulating from the posterior distribution over paths in these models, given partial and noisy observations. Our approach is an auxiliary variable Gibbs sampler, and is based on the idea of uniformization. This sets up a Markov chain over paths by alternately sampling a finite set of virtual jump times given the current path and then sampling a new path given the set of extant and virtual jump times using a standard hidden Markov model forward filtering-backward sampling algorithm. Our method is exact and does not involve approximations like time-discretization. We demonstrate how our sampler extends naturally to MJP-based models like Markov-modulated Poisson processes and continuous-time Bayesian networks and show significant computational benefits over state-of-the-art MCMC samplers for these models.Comment: Accepted at the Journal of Machine Learning Research (JMLR

    Data augmentation for models based on rejection sampling

    Full text link
    We present a data augmentation scheme to perform Markov chain Monte Carlo inference for models where data generation involves a rejection sampling algorithm. Our idea, which seems to be missing in the literature, is a simple scheme to instantiate the rejected proposals preceding each data point. The resulting joint probability over observed and rejected variables can be much simpler than the marginal distribution over the observed variables, which often involves intractable integrals. We consider three problems, the first being the modeling of flow-cytometry measurements subject to truncation. The second is a Bayesian analysis of the matrix Langevin distribution on the Stiefel manifold, and the third, Bayesian inference for a nonparametric Gaussian process density model. The latter two are instances of problems where Markov chain Monte Carlo inference is doubly-intractable. Our experiments demonstrate superior performance over state-of-the-art sampling algorithms for such problems.Comment: 6 figures. arXiv admin note: text overlap with arXiv:1311.090

    An Exact Auxiliary Variable Gibbs Sampler for a Class of Diffusions

    Full text link
    Stochastic differential equations (SDEs) or diffusions are continuous-valued continuous-time stochastic processes widely used in the applied and mathematical sciences. Simulating paths from these processes is usually an intractable problem, and typically involves time-discretization approximations. We propose an exact Markov chain Monte Carlo sampling algorithm that involves no such time-discretization error. Our sampler is applicable to the problem of prior simulation from an SDE, posterior simulation conditioned on noisy observations, as well as parameter inference given noisy observations. Our work recasts an existing rejection sampling algorithm for a class of diffusions as a latent variable model, and then derives an auxiliary variable Gibbs sampling algorithm that targets the associated joint distribution. At a high level, the resulting algorithm involves two steps: simulating a random grid of times from an inhomogeneous Poisson process, and updating the SDE trajectory conditioned on this grid. Our work allows the vast literature of Monte Carlo sampling algorithms from the Gaussian process literature to be brought to bear to applications involving diffusions. We study our method on synthetic and real datasets, where we demonstrate superior performance over competing methods.Comment: 37 pages, 13 figure
    • …
    corecore