41 research outputs found

    New report on the invasive Bondar's Nesting Whitefly (Paraleyrodes bondari Peracchi) on oil palm in India

    Get PDF
    This communication is the new report of the neotropical invasive Bondar's Nesting Whitefly (BNW) , Paraleyrodes bondari Peracchi (Hemiptera: Aleyrodidae)incidence in oil palm in India. A typical feature of BNW infestation is the presence of woolly wax nests on the abaxial surface of oil palm leaflets. The nesting whitefly population was observed to increase phenomenally on oil palm and within a year ie., from 2021 to 2022, a 100 per cent palm infestation was observed. During this period the intensity per palm increased by 24.49 per cent and per leaf increased by 63.28 per cent. Analysis of the partial mitochondrial cytochrome oxidase subunit 1 (CO1) sequences from adult specimens indicated 100% nucleotide identity with Bondar's Nesting Whitefly from coconut

    Methicillin sensitive Staphylococcus aureus producing Panton-Valentine leukocidin toxin in Trinidad & Tobago: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Certain <it>Staphylococcus aureus </it>strains produce Panton-Valentine leukocidin, a toxin that lyses white blood cells causing extensive tissue necrosis and chronic, recurrent or severe infection. This report documents a confirmed case of methicillin-sensitive <it>Staphylococcus aureus </it>strain harboring Panton-Valentine leukocidin genes from Trinidad and Tobago. To the best of our knowledge, this is the first time that such a case has been identified and reported from this country.</p> <p>Case presentation</p> <p>A 13-year-old Trinidadian boy of African descent presented with upper respiratory symptoms and gastroenteritis-like syptoms. About two weeks later he was re-admitted to our hospital complaining of pain and weakness affecting his left leg, where he had received an intramuscular injection of an anti-emetic drug. He deteriorated and developed septic arthritis, necrotizing fasciitis and septic shock with acute respiratory distress syndrome, leading to death within 48 hours of admission despite intensive care treatment. The infection was caused by <it>S. aureus</it>. Bacterial isolates from specimens recovered from our patient before and after his death were analyzed using microarray DNA analysis and <it>spa </it>typing, and the results revealed that the <it>S. aureus </it>isolates belonged to clonal complex 8, were methicillin-susceptible and positive for Panton-Valentine leukocidin. An autopsy revealed multi-organ failure and histological tissue stains of several organs were also performed and showed involvement of his lungs, liver, kidneys and thymus, which showed Hassal's corpuscles.</p> <p>Conclusion</p> <p>Rapid identification of Panton-Valentine leukocidin in methicillin-sensitive <it>S. aureus </it>isolates causing severe infections is necessary so as not to miss their potentially devastating consequences. Early feedback from the clinical laboratories is crucial.</p

    Methicillin sensitive Staphylococcus aureus producing Panton-Valentine leukocidin toxin in Trinidad & Tobago: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Certain <it>Staphylococcus aureus </it>strains produce Panton-Valentine leukocidin, a toxin that lyses white blood cells causing extensive tissue necrosis and chronic, recurrent or severe infection. This report documents a confirmed case of methicillin-sensitive <it>Staphylococcus aureus </it>strain harboring Panton-Valentine leukocidin genes from Trinidad and Tobago. To the best of our knowledge, this is the first time that such a case has been identified and reported from this country.</p> <p>Case presentation</p> <p>A 13-year-old Trinidadian boy of African descent presented with upper respiratory symptoms and gastroenteritis-like syptoms. About two weeks later he was re-admitted to our hospital complaining of pain and weakness affecting his left leg, where he had received an intramuscular injection of an anti-emetic drug. He deteriorated and developed septic arthritis, necrotizing fasciitis and septic shock with acute respiratory distress syndrome, leading to death within 48 hours of admission despite intensive care treatment. The infection was caused by <it>S. aureus</it>. Bacterial isolates from specimens recovered from our patient before and after his death were analyzed using microarray DNA analysis and <it>spa </it>typing, and the results revealed that the <it>S. aureus </it>isolates belonged to clonal complex 8, were methicillin-susceptible and positive for Panton-Valentine leukocidin. An autopsy revealed multi-organ failure and histological tissue stains of several organs were also performed and showed involvement of his lungs, liver, kidneys and thymus, which showed Hassal's corpuscles.</p> <p>Conclusion</p> <p>Rapid identification of Panton-Valentine leukocidin in methicillin-sensitive <it>S. aureus </it>isolates causing severe infections is necessary so as not to miss their potentially devastating consequences. Early feedback from the clinical laboratories is crucial.</p

    Kimberlites, flood basalts and mantle plumes: new insights from the Deccan large igneous province

    No full text
    A clear-cut temporal and spatial relationship between small-volume, volatile-rich and highly potassic continental melt fractions, such as kimberlites and related rocks, and large-volume continental flood basalts exists in several Large Igneous Provinces (LIPs). Many of these LIPs are also widely regarded as products of mantle plumeā€“lithosphere interactions. The small-volume melts either immediately pre-date or post-date or even are co-eval with the main flood basalt event. The overlap of ages between the flood basalts and the kimberlites very likely reflects a cause and effect relationship via mantle plumes. Recently discovered end-Cretaceous diamondiferous kimberlites (orangeites) in the Bastar craton of central India which are synchronous with the flood basalts, carbonatites, lamprophyres and alkaline rocks of the Deccan LIP provide an opportunity to re-evaluate the role of mantle plumeā€“lithosphere interactions in the generation of these disparate magmas. The geographical zonation of the kimberliteā€“lamprophyreā€“carbonatiteā€“alkaline rock spectrum in the Deccan LIP is inferred to reflect variable thickness of the pre-Deccan Indian lithosphere with a thinner lithosphere along the known rift zones of northwestern and western India and a thickened lithosphere underlying the Bastar craton of central India. This heterogeneity is thought to have controlled the volume of melt generation and melt ascent, as well as the ultimate alkaline magma type. These findings are supported by the regional lithospheric thickness map, generated from converting seismic shear wave velocities into temperature profiles, which clearly depicts that the present-day lithosphere beneath the Bastar craton is thicker than that in western and NW India where the centre of the Deccan plume-head was located. Thermal weakening of the sub-Bastar craton due to mantle plumeā€“lithosphere interaction at the end-Cretaceous resulting in a thin-spot is suggested to have controlled the Deccan-related mafic dyke emplacement in the Bastar craton

    BibliografĆ­a

    No full text
    ACOSTA, J. de, 1954 [1590] ā€“ Historia natural y moral des las indias. In: Obras del P. JosĆ© de Acosta de la CompaƱƭa de JesĆŗs, Vol. 73 (P. Francisco Mateos, ed.): 3-247; Madrid: Ed. Atlas. Biblioteca de Autores EspaƱoles. ALARCO LARRABURE, R., 1975 ā€“ Los negritos de HuĆ”nuco. Revista de San Marcos, nĀ° 13: 55-95; Lima. ARGUEDAS, J. M., 1953 ā€“ Folklore del valle del Mantaro Provincia de Jauja y ConcepcĆ­on, Cuentos MĆ”gico-realistas y Canciones de Fiestas Tradicionales. Folklore Americano, AƱo 1, ..

    Platinum-group element (PGE) geochemistry of Deccan orangeites, Bastar craton, central India: implication for a non-terrestrial origin for iridium enrichment at the Kā€“Pg boundary

    No full text
    We report platinum group element (PGE) concentrations of twelve bulk-rock samples from the Behradih and Kodomali orangeite intrusions in the Mainpur field, Bastar craton, central India, which are emplaced synchronously with the Deccan flood basalts. Their palladium-group PGE (PPGE) (1.8ā€“5.2 ppb Pt, 1.2ā€“6.4 ppb Pd) contents are distinctly higher compared to their iridium-group PGE (IPGE) concentrations (0.8ā€“2 ppb Os, 0.8ā€“1.2 ppb Ir, 3.2ā€“4.2 ppb Ru, and 0.2ā€“0.8 ppb Rh). Their PGE contents as well as Pd/Ir ratios are either similar or even lower than those from the Mesoproterozoic and Cretaceous kimberlites and orangeites from the Kaapvaal craton (southern Africa), Cretaceous kimberlites from the Sao Fransisco craton (Brazil), Ordovician kimberlites from the North China craton and the Mesoproterozoic southern Indian kimberlites from the Eastern Dharwar craton. Anomalously elevated iridium (and other PGE) contents in sediments at the Cretaceousā€“Paleogene (Kā€“Pg) boundary are commonly attributed either to a large bolide impact triggering the Kā€“Pg mass extinction or to terrestrial causes such as volcanic eruptions (Deccan flood basalts) or even to mantle-plume derived lithospheric gaseous explosions (Verneshots). Lack of unusually high abundances of PGE in the Mainpur orangeties as well as in the co-eval Deccan flood basalts and associated alkaline rocks implies that the anomalous iridium enrichment reported at the Kā€“Pg boundary sections was not sourced from the mantle and likely originated from an extraterrestrial source

    Petrogenesis of the end-Cretaceous diamondiferous Behradih orangeite pipe: implication for mantle plumeā€“lithosphere interaction in the Bastar craton, Central India

    No full text
    We present mineral chemistry, geochemistry and Sr and Nd isotope data of drillcore samples from the Late Cretaceous (65 Ma), diamondiferous Behradih ultramafic pipe, Bastar craton, Central India, which is emplaced synchronous with the Deccan flood basalt eruption. The rock is affected by pervasive serpentineā€“talcā€“carbonate alteration and consists of pelletal lapilli and variously sized olivine and phlogopite macrocrysts, set in a groundmass of abundant clinopyroxene, chrome spinel, apatite, Fe-rich perovskite (&#60;50 &#956;m), zircon, titanite, rutile and calcite. Mineralogical studies identify the Behradih pipe as orangeite (formerly termed as Group II kimberlite) and establish the occurrence of such rocks outside the Kaapvaal craton, southern Africa. As the age of the Behradih orangeite overlaps with that of the main phase of the Deccan flood basalt magmatism, we infer a common tectonomagmatic control vis-a-vis the Deccan-related mantle plume. Trace element ratios and the Nd isotope signatures of the Behradih pipe imply that the Deccan plume has only contributed heat, but not substantial melt, to the Behradih magma with a cause-and-consequence relationship between them. Our study highlights (a) a striking similarity in the genesis of Late Cretaceous orangeites associated with the continental flood basalts in the Kaapvaal and Bastar cratons but related to different mantle plumes and (b) the role of plumeā€“lithosphere interaction in the generation of orangeites

    The Late Cretaceous diamondiferous pyroclastic kimberlites from the Fort Ć  la Corne (FALC) field, Saskatchewan craton, Canada: petrology, geochemistry and genesis

    No full text
    The Late Cretaceous (ca. 100 Ma) diamondiferous Fort a la Corne (FALC) kimberlite field in the Saskatchewan (Sask) craton, Canada, is one of the largest known kimberlite fields on Earth comprising essentially pyroclastic kimberlites. Despite its discovery more than two decades ago, petrological, geochemical and petrogenetic aspects of the kimberlites in this field are largely unknown. We present here the first detailed petrological and geochemical data combined with reconnaissance Nd isotope data on drill-hole samples of five major kimberlite bodies. Petrography of the studied samples reveals that they are loosely packed, clast-supported and variably sorted, and characterised by the presence of juvenile lapilli, crystals of olivine, xenocrystal garnet (peridotitic as well as eclogitic paragenesis) and Mg-ilmenite. Interclast material is made of serpentine, phlogopite, spinel, carbonate, perovskite and rutile. The mineral compositions, whole-rock geochemistry and Nd isotopic composition (Nd: + 0.62 to āˆ’ 0.37) are indistinguishable from those known from archetypal hypabyssal kimberlites. Appreciably lower bulk-rock CaO (mostly &#60; 5 wt%) and higher La/Sm ratios (12ā€“15; resembling those of orangeites) are a characteristic feature of these rocks. Their geochemical composition excludes any effects of significant crustal and mantle contamination/assimilation. The fractionation trends displayed suggest a primary kimberlite melt composition indistinguishable from global estimates of primary kimberlite melt, and highlight the dominance of a kimberlite magma component in the pyroclastic variants. The lack of Nb-Ta-Ti anomalies precludes any significant role of subduction-related melts/fluids in the metasomatism of the FALC kimberlite mantle source region. Their incompatible trace elements (e.g., Nb/U) have OIB-type affinities whereas the Nd isotope composition indicates a near-chondritic to slightly depleted Nd isotope composition. The Neoproterozoic (&#8764; 0.6ā€“0.7 Ga) depleted mantle (T<sub>DM</sub>) Nd model ages coincide with the emplacement age (ca. 673 Ma) of the Amon kimberlite sills (Baffin Island, Rae craton, Canada) and have been related to upwelling protokimberlite melts during the break-up of the Rodinia supercontinent and its separation from Laurentia (North American cratonic shield). REE inversion modelling for the FALC kimberlites as well as for the Jericho (ca. 173 Ma) and Snap Lake (ca. 537 Ma) kimberlites from the neighbouring Slave craton, Canada, indicate all of their source regions to have been extensively depleted (&#8764; 24%) before being subjected to metasomatic enrichment (1.3ā€“2.2 %) and subsequent small-degree partial melting. These findings are similar to those previously obtained on Mesozoic kimberlites (Kaapvaal craton, southern Africa) and Mesoproterozoic kimberlites (Dharwar craton, southern India). The striking similarity in the genesis of kimberlites emplaced over broad geological time and across different supercontinents of Laurentia, Gondwanaland and Rodinia, highlights the dominant petrogenetic role of the sub-continental lithosphere. The emplacement of the FALC kimberlites can be explained both by the extensive subduction system in western North America that was established at ca. 150 Ma as well as by far-field effects of the opening of the North Atlantic ocean during the Late Cretaceous

    Thin lithosphereā€“asthenosphere boundary beneath eastern Indian craton

    No full text
    The lithosphereā€“asthenosphere boundary (LAB) separates the hard and rigid outer layer of the earth (lithosphere) and the weaker, hotter, and deeper part of the upper mantle (asthenosphere) and plays a pivotal role in plate tectonics. However, its definitive detection, especially beneath the cratons, is proving elusive. One of the geophysical tools used to map the LAB beneath the cratons is through magnetotelluric (MT) observations. The resistivity at boundary falls in the range of 5ā€“25 Ī©-m and can be explained by the presence of a small amount of water in the asthenosphere, possibly inducing partial melt. Here, we report thickness of the LAB in one of the oldest dated ancient cratons of Indiaā€”Eastern Indian Craton (EIC) of ~ 3.3 Gyr, from MT studies. The two prominent phase-sensitive strike directions, one each for crust and mantle, and the presence of resistive continental lower crust act as a window to mantle in resolving deeper electrical conductivity structures beneath EIC. Our results show that the LAB beneath the EIC is at 95 km. The region is interesting as the electrical properties of the crust and mantle and the Moho depth are similar to those of the Slave Craton, Canada (~ 4.0 Gyr) but the depth of the LAB beneath the EIC is half that of the Slave craton. As cratonic signatures, depicted by ultrapotassic rocks from Gondwana coal fields close to EIC, are preserved at least till early Cretaceous (117 Ma) it is likely that Himalayan orogeny could have played a major role in delamination of the lithospheric roots of the EIC in addition to attendant seismicity

    Reā€“Os isotope study of Indian kimberlites and lamproites: implications for mantle source regions and cratonic evolution

    No full text
    We report the first Reā€“Os isotope data for samples from Mesoproterozoic kimberlite and lamproite occurrences from the Eastern Dharwar craton and end-Cretaceous Kodomali orangeite from the Bastar craton, India. The Re concentrations of the kimberlites (n = 10) range from 0.077 to 0.290 parts per billion (ppb) whereas the Os contents vary from 0.312 to 1.98 ppb. The measured 187Os/188Os ratios range from 0.1143 to 0.1655. The calculated initial 187Os/188Os ratios range from 0.0967 to 0.1260, with low values indicating Re mobility on the whole-rock scale since crystallisation. The orangeite has a measured 187Os/188Os ratio of 0.1342 and a slightly higher initial 187Os/188Os value of 0.1330. On the other hand, the lamproites (n = 3) display lower Re (0.031 to 0.279 ppb) and Os (0.060 to 0.129 ppb) contents. Their measured 187Os/188Os ratios (0.2398 to 0.7521) and their initial 187Os/188Os ratios (0.1891 to 0.5499) are significantly higher. A majority of the kimberlites display Ī³Osi of āˆ’ 2.7 to āˆ’ 22.7 and imply their interaction with a depleted or unradiogenic source such as cratonic lithosphere. A regression age (involving 187Re/188Os vs 187Os/188Os) of 1008 Ā± 410 Ma for eight least altered kimberlites corresponds, within the error limits, to their emplacement age (1.1 Ga) and negates mixing of a highly radiogenic low Os melt, similar to the lamproites, and lithospheric mantle in their genesis. The most Re-depleted kimberlite sample with the lowest present-day 187Os/188Os (0.1143) yields a model age (TMA) of 3.2 Ga and a Re-depletion model age (TRD) of 2 Ga. The TRD age reveals: (i) the involvement of Proterozoic lithosphere in the genesis of the kimberlites, (ii) coupling of the continental crust of the Eastern Dharwar craton and the underlying sub-continental lithospheric mantle from 2.5 Ga to at least 1.1 Ga, and (iii) its similarity with the emplacement age of large igneous provinces of similar age and magmatism in the Eastern Dharwar and Bastar cratons (India), the Superior Craton (Canada) and the Kaapvaal craton (southern Africa). However, two of the kimberlite samples (from Raichur and Narayanpet kimberlite fields) show positive Ī³Os values ranging from 2.9 to 3.6 suggesting involvement of multiple sources (e.g., subduction, plume or metasomatised lithosphere) in their genesis. An enriched mantle source for the Kodomali orangeite (Ī³Os = 3) is also supported by its lower ĪµNdi values. The lamproites have very radiogenic Ī³Osi values of 56 to 355, similar to those displayed by the lamproites of the Italian peninsula, and indicate a source with elevated Re/Os, possibly a subducted component. Our study provides strong evidence for contrasting mantle sources for kimberlites and lamproites in the Eastern Dharwar craton, southern India
    corecore