36 research outputs found

    DNase I site mapping and micrococcal nuclease digestion of pachytene chromatin reveal novel structural features

    Get PDF
    A comparison of the DNase I digestion products of the 32P-5'-end-labeled pachytene nucleosome core particles (containing histones H2A, TH2A, X2, H2B, TH2B, H3, and H4) and liver nucleosome core particles (containing somatic histones H2A, H2B, H3, and H4) revealed that the cleavage sites that are 30, 40, and 110 nucleotides away from the 5'-end are significantly more accessible in the pachytene core particles than in the liver core particles. These cleavage sites correspond to the region wherein H2B interacts with the nucleosome core DNA. These results, therefore, suggest that the histone-DNA interaction at these sites in the pachytene core particles is weaker, possibly because of the presence of the histone variant TH2B interacting at similar topological positions in the nucleosome core as that of its somatic counterpart H2B. Such a loosened structure may also be maintained even in the native pachytene chromatin since micrococcal nuclease digestion of pachytene nuclei resulted in a higher ratio of subnucleosomes (SN4 + SN7) to mononucleosomes than that observed in liver chromatin

    Identification of two novel zinc finger modules and nuclear localization signal in rat spermatidal protein TP2 by site-directed mutagenesis

    Get PDF
    Spermatidal protein TP2, which appears transiently during stages 12-16 of mammalian spermiogenesis, is a DNA condensing zinc metalloprotein with a preference to GC-rich DNA. We have carried out a detailed site-directed mutagenesis analysis of rat spermatidal protein TP2 to delineate the amino acid residues involved in coordination with two atoms of zinc. Two zinc fingers modules have been identified involving 4 histidine and 4 cysteine residues, respectively. The modular structure of the two zinc fingers identified in TP2 define a new class of zinc finger proteins that do not fall into any of the known classes of zinc fingers. Transfection experiments with COS-7 cells using wild type and the two zinc finger pocket mutants have shown that TP2 preferentially localizes to nucleolus. The nuclear localization signal in TP2 was identified to be 87GKVSKRKAV95 present in the C-terminal third of TP2 as a part of an extended NoLS sequence

    Immunochemical detection of Z-DNA in rat pachytene spermatocytes

    No full text
    Rat testicular nuclei have been probed for the presence of Z-DNA conformation by employing indirect immunofluorescence technique using anti-Z-DNA antibodies. Pachytene nuclei, in which meiotic recombination takes place, showed brighter fluorescence than the premeiotic and postmeiotic spermatogenic nuclei. Moreover, utilizing a novel chromatin immunoblotting tecnique, Z-DNA conformation was found to be enriched in the poly(ADP-ribosyl)ated chromatin domains of the pachytene nucleus

    Corrigendum

    No full text

    Biochemical effects of the porphyrinogenic drug allylisopropylacetamide. A comparative study with phenobarbital

    Get PDF
    Successive administrations of allylisopropylacetamide, a potent porphyrinogenic drug, increase liver weight, microsomal protein and phospholipid contents. There is an increase in the rate of microsomal protein synthesis in vivo and in vitro. The drug decreases microsomal ribonuclease activity and increases NADPH–cytochrome c reductase activity. Phenobarbital, which has been reported to exhibit all these changes mentioned, is a weaker inducer of δ-aminolaevulinate synthetase and increases the rate of haem synthesis only after a considerable time-lag in fed female rats, when compared with the effects observed with allylisopropylacetamide. Again, phenobarbital does not share the property of allylisopropylacetamide in causing an initial decrease in cytochrome P-450 content. Haematin does not counteract most of the biochemical effects caused by allylisopropylacetamide, although it is quite effective in the case of phenobarbital. Haematin does not inhibit the uptake of [2-(14)C]allylisopropylacetamide by any of the liver subcellular fractions

    DNase I Site Mapping and Micrococcal Nuclease Digestion of Pachytene Chromatin Reveal Novel Structural Features

    No full text
    A comparison of the DNase I digestion products of the 32P-5’-end-labeled pachytene nucleosome core particles (containing histones H2A, TH2A, X2, H2B, THPB, H3a, nd H4) and liver nucleosome core particles (containing somatic histones H2A, H2B, H3, and H4) revealed that the cleavage sites that are 30, 40, and 110 nucleotidesa way from the 5’-enda re significantly more accessiblei n the pachytene core particles than in the liver core particles. These cleavage sites correspond to the region wherein H2B interacts with the nucleosome core DNA. These results, therefore, suggest that the histone-DNA interactiona t these sites in the pachytene core particles is weaker, possibly because of the presence of the histone variant THBB interacting at similar topological positions in the nucleosome core as that of its somatic counterpart H2B. Such a loosened structumrea y also be maintainede ven in the native pachytene chromatin since micrococcal nuclease digestion of pachytene nuclei resulted in a higher ratio of subnucleosomes (SN4 + SN?) to mononucleosomes than that observed liinv er chromati

    Condensation of DNA and chromatin by an SPKK-containing octapeptide repeat motif present in the c-terminus of histone H1

    No full text
    Several DNA binding motifs have been described in the C-terminus of histone H1 (Churchill & Travers, 1991), of these the S/TPKK repeat (Suzuki, 1989) often occurs as a part of an octapeptide repeat of the type XTPKKXKK. We have studied in detail the DNA and chromatin condensing properties of a consensus octapeptide KSPKKAKK (8 mer) present in many histone H1 subtypes and its imperfect repeat ATPKKSTKKTPKKAKK (16 mer TPKK) as it occurs in the C-terminus of rat histone H1d. The 16 mer TPKK peptide containing two S/TPKK motifs was able to condense both rat oligonucleosomal (2-5 kbp) DNA and histone H1-depleted chromatin as revealed by circular dichroism spectroscopy. The 8 mer peptide, however, was unable to condense either the DNA or the histone H1-depleted chromatin. Both the 8 mer peptide and the 16 mer TPKK peptide displaced distamycin A from the drug-DNA complex, although with different efficiency, indicating that while these two peptides could bind DNA, only the 16 mer (TPKK) peptide could bring about condensation of DNA and histone H1-depleted chromatin. A mutant 16 mer (TAKK) peptide wherein two proline residues are replaced by alanine, was ineffective in bringing about condensation of both DNA and histone H1-depleted chromatin. These results suggest that the two β-turn structures present in the 16 mer (TPKK) peptide could be important in facilitating binding to different regions of duplex DNA thereby bringing about close packing and condensation. The condensation property of the 16 mer (TPKK) peptide was very similar to that of histone H1 in terms of (a) its preference for AT rich DNA, (b) cooperativity of condensation, and (c) salt dependence of condensation. The 16 mer (TPKK) peptide, but not the 8 mer peptide or the 16 mer (TAKK) peptide, could form complexes with a polynucleosomal 5S DNA core resulting in retarded mobility similar to the complexes formed with histone H1 on agarose gel electrophoresis

    Zinc Dependent Recognition of a Human CpG Island Sequence by the Mammalian Spermatidal Protein TP2

    No full text
    Rat spermatidal protein TP2 is a zinc metalloprotein with two atoms of zinc coordinated to cysteine and histidine residues and condenses alternating GC copolymer preferentially in a zinc dependent manner [Kundu, T. K., & Rao, M. R. S. (1995) Biochemistry 34, 5143-5150]. In the present study, we have used a 40-mer oligonucleotide containing a human CpG island sequence to study its interaction with TP2 by gel mobility shift assays. A specific complex was observed in the presence of poly(dI). poly(dC). Preincubation of TP2 with 10 mM EDTA or 1 mM 1, 10-o-phenanthroline inhibited the complex formation by more than 90%. Competition experiments with various polynucleotides revealed the following order of efficiency: poly(dG-dC). poly(dG-dC) > cold homologous oligonucleotide > poly(dA-dT). poly(dA-dT). Homoduplexes poly(dG). poly(dC) and poly(dA). poly(dT) had no effect on the complex formation. Chromomycin A(3), a GC minor groove binding drug, inhibited the complex formation. Methylation of the CpG doublet within the CpG island sequence by SssI methylase (CpG methylase) completely abolished the complex formation. Methylation of G at the N-7 position with dimethyl sulfate did not affect the recognition of CpG island by TP2. Thus, CpG islands, widely distributed in the mammalian genome, may serve as specific loci for initiation of chromatin condensation by TP2 during the later stages of spermiogenesi
    corecore