1 research outputs found
A Novel Approach for Detection of DoS / DDoS Attack in Network Environment using Ensemble Machine Learning Model
One of the most serious threat to network security is Denial of service (DOS) attacks. Internet and computer networks are now important parts of our businesses and daily lives. Malicious actions have become more common as our reliance on computers and communication networks has grown. Network threats are a big problem in the way people communicate today. To make sure that the networks work well and that users' information is safe, the network data must be watched and analysed to find malicious activities and attacks. Flooding may be the simplest DDoS assault. Computer networks and services are vulnerable to DoS and DDoS attacks. These assaults flood target systems with malicious traffic, making them unreachable to genuine users. The work aims to enhance the resilience of network infrastructures against these attacks and ensure uninterrupted service delivery. This research develops and evaluates enhanced DoS/DDoS detection methods. DoS attacks usually stop or slow down legal computer or network use. Denial-of-service (DoS) attacks prevent genuine users from accessing and using information systems and resources. The OSI model's layers make up the computer network. Different types of DDoS strikes target different layers. The Network Layer can be broken by using ICMP Floods or Smurf Attacks. The Transport layer can be attacked using UDP Floods, TCP Connection Exhaustion, and SYN Floods. HTTP-encrypted attacks can be used to get through to the application layer. DoS/DDoS attacks are malicious attacks. Protect network data from harm. Computer network services are increasingly threatened by DoS/DDoS attacks. Machine learning may detect prior DoS/DDoS attacks. DoS/DDoS attacks proliferate online and via social media. Network security is IT's top priority. DoS and DDoS assaults include ICMP, UDP, and the more prevalent TCP flood attacks. These strikes must be identified and stopped immediately. In this work, a stacking ensemble method is suggested for detecting DoS/DDoS attacks so that our networked data doesn't get any worse. This paper used a method called "Ensemble of classifiers," in which each class uses a different way to learn. In proposed methodology Experiment#1 , I used the Home Wifi Network Traffic Collected and generated own Dataset named it as MywifiNetwork.csv, whereas in proposed methodology Experiment#2, I used the kaggle repository “NSL-KDD benchmark dataset” to perform experiments in order to find detection accuracy of dos attack detection using python language in jupyter notebook. The system detects attack-type or legitimate-type of network traffic during detection ML classification methods are used to compare how well the suggested system works. The results show that when the ensembled stacking learning model is used, 99% of the time it is able to find the problem. In proposed methodology two Experiments are implemented for comparing detection accuracy with the existing techniques. Compared to other measuring methods, we get a big step forward in finding attacks. So, our model gives a lot of faith in securing these networks. This paper will analyse the behaviour of network traffics