3 research outputs found

    DQSSA: A Quantum-Inspired Solution for Maximizing Influence in Online Social Networks (Student Abstract)

    Full text link
    Influence Maximization is the task of selecting optimal nodes maximising the influence spread in social networks. This study proposes a Discretized Quantum-based Salp Swarm Algorithm (DQSSA) for optimizing influence diffusion in social networks. By discretizing meta-heuristic algorithms and infusing them with quantum-inspired enhancements, we address issues like premature convergence and low efficacy. The proposed method, guided by quantum principles, offers a promising solution for Influence Maximisation. Experiments on four real-world datasets reveal DQSSA's superior performance as compared to established cutting-edge algorithms.Comment: AAAI Conference on Artificial Intelligence 202

    Optimizing Electric Vehicle Efficiency with Real-Time Telemetry using Machine Learning

    Full text link
    In the contemporary world with degrading natural resources, the urgency of energy efficiency has become imperative due to the conservation and environmental safeguarding. Therefore, it's crucial to look for advanced technology to minimize energy consumption. This research focuses on the optimization of battery-electric city style vehicles through the use of a real-time in-car telemetry system that communicates between components through the robust Controller Area Network (CAN) protocol. By harnessing real-time data from various sensors embedded within vehicles, our driving assistance system provides the driver with visual and haptic actionable feedback that guides the driver on using the optimum driving style to minimize power consumed by the vehicle. To develop the pace feedback mechanism for the driver, real-time data is collected through a Shell Eco Marathon Urban Concept vehicle platform and after pre-processing, it is analyzed using the novel machine learning algorithm TEMSL, that outperforms the existing baseline approaches across various performance metrics. This innovative method after numerous experimentation has proven effective in enhancing energy efficiency, guiding the driver along the track, and reducing human errors. The driving-assistance system offers a range of utilities, from cost savings and extended vehicle lifespan to significant contributions to environmental conservation and sustainable driving practices

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore