102,677 research outputs found

    Identifying Influential Nodes in Bipartite Networks Using the Clustering Coefficient

    Full text link
    The identification of influential nodes in complex network can be very challenging. If the network has a community structure, centrality measures may fail to identify the complete set of influential nodes, as the hubs and other central nodes of the network may lie inside only one community. Here we define a bipartite clustering coefficient that, by taking differently structured clusters into account, can find important nodes across communities

    Predicting Item Popularity: Analysing Local Clustering Behaviour of Users

    Full text link
    Predicting the popularity of items in rating networks is an interesting but challenging problem. This is especially so when an item has first appeared and has received very few ratings. In this paper, we propose a novel approach to predicting the future popularity of new items in rating networks, defining a new bipartite clustering coefficient to predict the popularity of movies and stories in the MovieLens and Digg networks respectively. We show that the clustering behaviour of the first user who rates a new item gives insight into the future popularity of that item. Our method predicts, with a success rate of over 65% for the MovieLens network and over 50% for the Digg network, the future popularity of an item. This is a major improvement on current results.Comment: 25 pages, 11 figure
    corecore