323 research outputs found

    T Cells That Help B Cells in Chronically Inflamed Tissues

    Get PDF
    Chronically inflamed tissues commonly accrue lymphocyte aggregates that facilitate local T cell-B cell interactions. These aggregates can range from small, loosely arranged lymphocyte clusters to large, organized ectopic lymphoid structures. In some cases, ectopic lymphoid structures develop germinal centers that house prototypical T follicular helper (Tfh) cells with high expression of Bcl6, CXCR5, PD-1, and ICOS. However, in many chronically inflamed tissues, the T cells that interact with B cells show substantial differences from Tfh cells in their surface phenotypes, migratory capacity, and transcriptional regulation. This review discusses observations from multiple diseases and models in which tissue-infiltrating T cells produce factors associated with B cell help, including IL-21 and the B cell chemoattractant CXCL13, yet vary dramatically in their resemblance to Tfh cells. Particular attention is given to the PD-1hi CXCR5− Bcl6low T peripheral helper (Tph) cell population in rheumatoid arthritis, which infiltrates inflamed synovium through expression of chemokine receptors such as CCR2 and augments synovial B cell responses via CXCL13 and IL-21. The factors that regulate CD4+ T cell production of CXCL13 and IL-21 in these settings are also discussed. Understanding the range of T cell populations that can provide help to B cells within chronically inflamed tissues is essential to recognize these cells in diverse inflammatory conditions and to optimize either broad or selective therapeutic targeting of B cell-helper T cells

    Single photo-electron trapping, storage, and detection in a one-electron quantum dot

    Full text link
    There has been considerable progress in electro-statically emptying, and re-filling, quantum dots with individual electrons. Typically the quantum dot is defined by electrostatic gates on a GaAs/AlGaAs modulation doped heterostructure. We report the filling of such a quantum dot by a single photo-electron, originating from an individual photon. The electrostatic dot can be emptied and reset in a controlled fashion before the arrival of each photon. The trapped photo-electron is detected by a point contact transistor integrated adjacent to the electrostatic potential trap. Each stored photo-electron causes a persistent negative step in the transistor channel current. Such a controllable, benign, single photo-electron detector could allow for information transfer between flying photon qubits and stored electron qubits.Comment: 4 Pages, 5 Figure

    Multiplexed enrichment and genomic profiling of peripheral blood cells reveal subset-specific immune signatures

    Get PDF
    Specialized immune cell subsets are involved in autoimmune disease, cancer immunity, and infectious disease through a diverse range of functions mediated by overlapping pathways and signals. However, subset-specific responses may not be detectable in analyses of whole blood samples, and no efficient approach for profiling cell subsets at high throughput from small samples is available. We present a low-input microfluidic system for sorting immune cells into subsets and profiling their gene expression. We validate the system’s technical performance against standard subset isolation and library construction protocols and demonstrate the importance of subset-specific profiling through in vitro stimulation experiments. We show the ability of this integrated platform to identify subset-specific disease signatures by profiling four immune cell subsets in blood from patients with systemic lupus erythematosus (SLE) and matched control subjects. The platform has the potential to make multiplexed subset-specific analysis routine in many research laboratories and clinical settings.National Institute of Allergy and Infectious Diseases (U.S.) (Grant U24 AI118668

    Interleukin (IL)-1 promotes allogeneic T cell intimal infiltration and IL-17 production in a model of human artery rejection

    Get PDF
    Interleukin (IL) 1α produced by human endothelial cells (ECs), in response to tumor necrosis factor (TNF) or to co-culture with allogeneic T cells in a TNF-dependent manner, can augment the release of cytokines from alloreactive memory T cells in vitro. In a human–mouse chimeric model of artery allograft rejection, ECs lining the transplanted human arteries express IL-1α, and blocking IL-1 reduces the extent of human T cell infiltration into the artery intima and selectively inhibits IL-17 production by infiltrating T cells. In human skin grafts implanted on immunodeficient mice, administration of IL-17 is sufficient to induce mild inflammation. In cultured cells, IL-17 acts preferentially on vascular smooth muscle cells rather than ECs to enhance production of proinflammatory mediators, including IL-6, CXCL8, and CCL20. Neutralization of IL-17 does not reduce T cell infiltration into allogeneic human artery grafts, but markedly reduces IL-6, CXCL8, and CCL20 expression and selectively inhibits CCR6+ T cell accumulation in rejecting arteries. We conclude that graft-derived IL-1 can promote T cell intimal recruitment and IL-17 production during human artery allograft rejection, and suggest that targeting IL-1 in the perioperative transplant period may modulate host alloreactivity

    Epitaxial Zn(x)Fe(3-x)O(4) Thin Films: A Spintronic Material with Tunable Electrical and Magnetic Properties

    Full text link
    The ferrimagnetic spinel oxide Zn(x)Fe(3-x)O(4) combines high Curie temperature and spin polarization with tunable electrical and magnetic properties, making it a promising functional material for spintronic devices. We have grown epitaxial thin films with 0<=x<=0.9 on MgO(001) substrates with excellent structural properties both in pure Ar atmosphere and an Ar/O2 mixture by laser molecular beam epitaxy. We find that the electrical conductivity and the saturation magnetization can be tuned over a wide range during growth. Our extensive characterization of the films provides a clear picture of the underlying physics of this spinel ferrimagnet with antiparallel Fe moments on the A and B sublattice: (i) Zn substitution removes both Fe3+ moments from the A sublattice and itinerant charge carriers from the B sublattice, (ii) growth in finite oxygen partial pressure generates Fe vacancies on the B sublattice also removing itinerant charge carriers, and (iii) application of both Zn substitution and excess oxygen results in a compensation effect as Zn substitution partially removes the Fe vacancies. A decrease (increase) of charge carrier density results in a weakening (strengthening) of double exchange and thereby a decrease (increase) of conductivity and the saturation magnetization. This scenario is confirmed by the observation that the saturation magnetization scales with the longitudinal conductivity. The combination of tailored films with semiconductor materials such as ZnO in multi-functional heterostructures seems to be particularly appealing.Comment: 13 pages, 8 figures, Hall effect data removed, anti-phase boundary discussion added, accepted for publication in PRB79 (2009

    The impact of outpatient <i>versus</i> inpatient management on health-related quality of life outcomes for patients with malignant pleural effusion: the OPTIMUM randomised clinical trial

    Get PDF
    Background: The principal aim of malignant pleural effusion (MPE) management is to improve health-related quality of life (HRQoL) and symptoms.Methods: In this open-label randomised controlled trial, patients with symptomatic MPE were randomly assigned to either indwelling pleural catheter (IPC) insertion with the option of talc pleurodesis or chest drain and talc pleurodesis. The primary end-point was global health status, measured with the 30-item European Organisation for Research and Treatment of Cancer Quality of Life Core Questionnaire (EORTC QLQ-C30) at 30 days post-intervention. 142 participants were enrolled from July 2015 to December 2019.Results: Of participants randomly assigned to the IPC (n=70) and chest drain (n=72) groups, primary outcome data were available in 58 and 56 patients, respectively. Global health status improved in both groups at day 30 compared with baseline: IPC (mean difference 13.11; p=0.001) and chest drain (mean difference 10.11; p=0.001). However, there was no significant between-group difference at day 30 (mean intergroup difference in baseline-adjusted global health status 2.06, 95% CI −5.86–9.99; p=0.61), day 60 or day 90. No significant differences were identified between groups in breathlessness and chest pain scores. All chest drain arm patients were admitted (median length of stay 4 days); seven patients in the IPC arm required intervention-related hospitalisation.Conclusions: While HRQoL significantly improved in both groups, there were no differences in patient-reported global health status at 30 days. The outpatient pathway using an IPC was not superior to inpatient treatment with a chest drain
    corecore