20 research outputs found
Comment on electron spectral function and algebraic spin liquid for the normal state of underdoped high Tc superconductors (multiple letters
In a recent Letter [1], Rantner and Wen made a theoretical prediction of the power-law behavior of the electron spectral function in the pseudogap phase of underdoped cuprates, reminiscent of that in the one-dimensional Luttinger liquid
Kondo physics in the algebraic spin liquid
We study Kondo physics in the algebraic spin liquid, recently proposed to
describe [Phys. Rev. Lett. {\bf 98}, 117205 (2007)].
Although spin dynamics of the algebraic spin liquid is described by massless
Dirac fermions, this problem differs from the Pseudogap Kondo model, because
the bulk physics in the algebraic spin liquid is governed by an interacting
fixed point where well-defined quasiparticle excitations are not allowed.
Considering an effective bulk model characterized by an anomalous critical
exponent, we derive an effective impurity action in the slave-boson context.
Performing the large- analysis with a spin index , we
find an impurity quantum phase transition from a decoupled local-moment state
to a Kondo-screened phase. We evaluate the impurity spin susceptibility and
specific heat coefficient at zero temperature, and find that such responses
follow power-law dependencies due to the anomalous exponent of the algebraic
spin liquid. Our main finding is that the Wilson's ratio for the magnetic
impurity depends strongly on the critical exponent in the zero temperature
limit. We propose that the Wilson's ratio for the magnetic impurity may be one
possible probe to reveal criticality of the bulk system
Effect of gauge boson mass on the phase structure of QED
Dynamical chiral symmetry breaking (DCSB) in QED with finite gauge
boson mass is
studied in the framework of the rainbow approximation of Dyson-Schwinger
equations.
By adopting a simple gauge boson propagator ansatz at finite temperature, we
first numerically solve the
Dyson-Schwinger equation for the fermion self-energy to
determine the chiral phase diagram of QED with finite gauge boson mass
at finite chemical potential and finite temperature, then we study the
effect of the finite gauge mass on the phase diagram of QED. It is found
that the gauge boson mass suppresses the occurrence of
DCSB. The area of the region in the chiral phase diagram corresponding to
DCSB phase decreases as
the gauge boson mass increases. In
particular, chiral symmetry gets restored when is above a
certain critical value. In this paper, we use DCSB to describe the
antiferromagnetic order and use the gauge boson mass to describe the
superconducting order. Our results give qualitatively a physical
picture on the competition and coexistence between antiferromagnetic
order and superconducting orders in high temperature cuprate superconductors.Comment: 10 pages, 2 figure
Quantum Orders and Symmetric Spin Liquids
A concept -- quantum order -- is introduced to describe a new kind of orders
that generally appear in quantum states at zero temperature. Quantum orders
that characterize universality classes of quantum states (described by {\em
complex} ground state wave-functions) is much richer then classical orders that
characterize universality classes of finite temperature classical states
(described by {\em positive} probability distribution functions). The Landau's
theory for orders and phase transitions does not apply to quantum orders since
they cannot be described by broken symmetries and the associated order
parameters. We find projective representations of symmetry groups (which will
be called projective symmetry groups) can be used to characterize quantum
orders. With the help of quantum orders and the projective symmetry groups, we
construct hundreds of symmetric spin liquids, which have SU(2), U(1) or
gauge structures at low energies. Remarkably, some of the stable quantum phases
support gapless excitations even without any spontaneous symmetry breaking. We
propose that it is the quantum orders (instead of symmetries) that protect the
gapless excitations and make algebraic spin liquids and Fermi spin liquids
stable. Since high superconductors are likely to be described by a
gapless spin liquid, the quantum orders and their projective symmetry group
descriptions lay the foundation for spin liquid approach to high
superconductors.Comment: 58 pages, RevTeX4 home page: http://dao.mit.edu/~we
Possible Z2 phase and spin-charge separation in electron doped cuprate superconductors
The SU(2) slave-boson mean-field theory for the tt'J model is analyzed. The
role of next-nearest-neighbor hopping t' on the phase-diagram is studied. We
find a pseudogap phase in hole-doped materials (where t'<0). The pseudo-gap
phase is a U(1) spin liquid (the staggered-flux phase) with a U(1) gauge
interaction and no fractionalization. This agrees with experiments on hole
doped samples. The same calculation also indicates that a positive t' favors a
Z2 state with true spin-charge separation. The Z2 state that exists when t' >
0.5J can be a candidate for the pseudo-gap phase of electron-doped cuprates (if
such a phase exists). The experimental situation in electron-doped materials is
also addressed.Comment: 6 pages, 2 figures, RevTeX4. Homepage http://dao.mit.edu/~wen
Signature of the staggered flux state around a superconducting vortex in underdoped cuprates
Based on the SU(2) lattice gauge theory formulation of the t-J model, we
discuss possible signature of the unit cell doubling associated with the
staggered flux (SF) state in the lightly doped spin liquid. Although the SF
state appears only dynamically in a uniform d-wave superconducting (SC) state,
a topological defect [SU(2) vortex] freezes the SF state inside the vortex
core. Consequently, the unit cell doubling shows up in the hopping
() and pairing () order parameters of physical
electrons. We find that whereas the center in the vortex core is a SF state, as
one moves away from the core center, a correlated staggered modulation of
and becomes predominant. We predict that over the
region outside the core and inside the internal gauge field penetration depth
around a vortex center, the local density-of-states (LDOS) exhibits staggered
peak-dip (SPD) structure inside the V-shaped profile when measured on the
bonds. The SPD structure has its direct origin in the unit cell doubling
associated with the SF core and the robust topological texture, which has
little to do with the symmetry of the d-wave order parameter. Therefore the
structure may survive the tunneling matrix element effects and easily be
detected by STM experiment.Comment: 27 pages, 14 figures in GIF format, typo correcte
Electron spectral function and algebraic spin liquid for the normal state of underdoped high superconductors
We propose to describe the spin fluctuations in the normal state of
underdoped high superconductors as a manifestation of an algebraic spin
liquid. We have performed calculations within the slave-boson model to support
our proposal. Under the spin-charge separation picture, the normal state (the
spin-pseudogap phase) is described by massless Dirac fermions, charged bosons,
and a gauge field. We find that the gauge interaction is a marginal
perturbation and drives the mean-field free-spinon fixed point to a more
complicated spin-quantum-fixed-point -- the algebraic spin liquid, where
gapless excitations interact at low energies. The electron spectral function in
the normal state was found to have a Luttinger-liquid-like line shape as
observed in experiments. The spectral function obtained in the superconducting
state shows how a coherent quasiparticle peak appears from the incoherent
background as spin and charge recombine.Comment: 4 pages, 3 figures. published versio
Entanglement Entropy of 3-d Conformal Gauge Theories with Many Flavors
Three-dimensional conformal field theories (CFTs) of deconfined gauge fields
coupled to gapless flavors of fermionic and bosonic matter describe quantum
critical points of condensed matter systems in two spatial dimensions. An
important characteristic of these CFTs is the finite part of the entanglement
entropy across a circle. The negative of this quantity is equal to the finite
part of the free energy of the Euclidean CFT on the three-sphere, and it has
been proposed to satisfy the so called F-theorem, which states that it
decreases under RG flow and is stationary at RG fixed points. We calculate the
three-sphere free energy of non-supersymmetric gauge theory with a large number
N_F of bosonic and/or fermionic flavors to the first subleading order in 1/N_F.
We also calculate the exact free energies of the analogous chiral and
non-chiral {\cal N} = 2 supersymmetric theories using localization, and find
agreement with the 1/N_F expansion. We analyze some RG flows of supersymmetric
theories, providing further evidence for the F-theorem.Comment: 31 pages, 2 figures; v2 refs added, minor change
On gauge-invariant Green function in 2+1 dimensional QED
Both the gauge-invariant fermion Green function and gauge-dependent
conventional Green function in dimensional QED are studied in the large
limit. In temporal gauge, the infra-red divergence of gauge-dependent
Green function is found to be regulariable, the anomalous dimension is found to
be . This anomalous dimension was argued to be
the same as that of gauge-invariant Green function. However, in Coulomb gauge,
the infra-red divergence of the gauge-dependent Green function is found to be
un-regulariable, anomalous dimension is even not defined, but the infra-red
divergence is shown to be cancelled in any gauge-invariant physical quantities.
The gauge-invariant Green function is also studied directly in Lorentz
covariant gauge and the anomalous dimension is found to be the same as that
calculated in temporal gauge.Comment: 8 pages, 6 figures, to appear in Phys. Rev.
Towards critical physics in 2+1d with U(2N )-invariant fermions
Interacting theories of N relativistic fermion flavors in reducible spinor rep- resentations in 2+1 spacetime dimensions are formulated on a lattice using domain wall fermions (DWF), for which a U(2N) global symmetry is recovered in the limit that the wall separation Ls is made large. The Gross-Neveu (GN) model is studied in the large-N limit and an exponential acceleration of convergence to the large-Ls limit is demonstrated if the usual parity-invariant mass mψ ̄ψ is replaced by the U(2N)-equivalent im3ψ ̄γ3ψ. The GN model and two lattice variants of the Thirring model are simulated for N = 2 using a hybrid Monte Carlo algorithm, and studies made of the symmetry-breaking bilinear con- densate and its associated susceptibility, the axial Ward identity, and the mass spectrum of both fermion and meson excitations. Comparisons are made with existing results ob- tained using staggered fermions. For the GN model a symmetry-breaking phase transition is observed, the Ward identity is recovered, and the spectrum found to be consistent with large-N expectations. There appears to be no obstruction to the study of critical UV fixed-point physics using DWF. For the Thirring model the Ward identity is not recovered, the spectroscopy measurements are inconclusive, and no symmetry breaking is observed all the way up to the effective strong coupling limit. This is consistent with a critical Thirring flavor number Nc < 2, contradicting earlier staggered fermion results