1,469 research outputs found

    The Possessed

    Get PDF

    A Survey of 56 Mid-latitude EGRET Error Boxes for Radio Pulsars

    Get PDF
    We have conducted a radio pulsar survey of 56 unidentified gamma-ray sources from the 3rd EGRET catalog which are at intermediate Galactic latitudes (5 deg. < |b| < 73 deg.). For each source, four interleaved 35-minute pointings were made with the 13-beam, 1400-MHz multibeam receiver on the Parkes 64-m radio telescope. This covered the 95% error box of each source at a limiting sensitivity of about 0.2 mJy to pulsed radio emission for periods P > 10 ms and dispersion measures < 50 pc cm-3. Roughly half of the unidentified gamma-ray sources at |b| > 5 deg. with no proposed active galactic nucleus counterpart were covered in this survey. We detected nine isolated pulsars and four recycled binary pulsars, with three from each class being new. Timing observations suggest that only one of the pulsars has a spin-down luminosity which is even marginally consistent with the inferred luminosity of its coincident EGRET source. Our results suggest that population models, which include the Gould belt as a component, overestimate the number of isolated pulsars among the mid-latitude Galactic gamma-ray sources and that it is unlikely that Gould belt pulsars make up the majority of these sources. However, the possibility of steep pulsar radio spectra and the confusion of terrestrial radio interference with long-period pulsars (P > 200 ms) having very low dispersion measures (< 10 pc cm-3, expected for sources at a distance of less than about 1 kpc) prevent us from strongly ruling out this hypothesis. Our results also do not support the hypothesis that millisecond pulsars make up the majority of these sources. Non-pulsar source classes should therefore be further investigated as possible counterparts to the unidentified EGRET sources at intermediate Galactic latitudes.Comment: 24 pages, including 4 figures and 3 tables. Accepted for publication in Ap

    RFI Identification and Mitigation Using Simultaneous Dual Station Observations

    Full text link
    RFI mitigation is a critically important issue in radio astronomy using existing instruments as well as in the development of next-generation radio telescopes, such as the Square Kilometer Array (SKA). Most designs for the SKA involve multiple stations with spacings of up to a few thousands of kilometers and thus can exploit the drastically different RFI environments at different stations. As demonstrator observations and analysis for SKA-like instruments, and to develop RFI mitigation schemes that will be useful in the near term, we recently conducted simultaneous observations with Arecibo Observatory and the Green Bank Telescope (GBT). The observations were aimed at diagnosing RFI and using the mostly uncorrelated RFI between the two sites to excise RFI from several generic kinds of measurements such as giant pulses from Crab-like pulsars and weak HI emission from galaxies in bands heavily contaminated by RFI. This paper presents observations, analysis, and RFI identification and excision procedures that are effective for both time series and spectroscopy applications using multi-station data.Comment: 12 pages, 9 figures (4 in ps and 5 in jpg formats), Accepted for publication in Radio Scienc

    Twenty-One Millisecond Pulsars in Terzan 5 Using the Green Bank Telescope

    Full text link
    We have discovered 21 millisecond pulsars (MSPs) in the globular cluster Terzan 5 using the Green Bank Telescope, bringing the total of known MSPs in Terzan 5 to 24. These discoveries confirm fundamental predictions of globular cluster and binary system evolution. Thirteen of the new MSPs are in binaries, of which two show eclipses and two have highly eccentric orbits. The relativistic periastron advance for the two eccentric systems indicates that at least one of these pulsars has a mass >1.68 Msun at 95% confidence. Such large neutron star masses constrain the equation of state of matter at or beyond the nuclear equilibrium density.Comment: 12 pages, 2 figures. Accepted by Science. Published electronically via Science Express 13 Jan 200

    The GBT350 Survey of the Northern Galactic Plane for Radio Pulsars and Transients

    Get PDF
    Using the Green Bank Telescope (GBT) and Pulsar Spigot at 350MHz, we have surveyed the Northern Galactic Plane for pulsars and radio transients. This survey covers roughly 1000 square degrees of sky within 75 deg < l < 165 deg and |b| < 5.5 deg, a region of the Galactic Plane inaccessible to both the Parkes and Arecibo multibeam surveys. The large gain of the GBT along with the high time and frequency resolution provided by the Spigot make this survey more sensitive by factors of about 4 to slow pulsars and more than 10 to millisecond pulsars (MSPs), compared with previous surveys of this area. In a preliminary, reduced-resolution search of all the survey data, we have discovered 33 new pulsars, almost doubling the number of known pulsars in this part of the Galaxy. While most of these sources were discovered by normal periodicity searches, 5 of these sources were first identified through single, dispersed bursts. We discuss the interesting properties of some of these new sources. Data processing using the data's full-resolution is ongoing, with the goal of uncovering MSPs missed by our first, coarse round of processing.Comment: To appear in the proceedings of "Forty Years of Pulsars: Millisecond Pulsars, Magnetars and More" held in Montreal, Canada, August 12-17, 2007. 3 pages, 2 figure

    Polarized radio emission from the magnetar XTE J1810-197

    Get PDF
    We have used the Parkes radio telescope to study the polarized emission from the anomalous X-ray pulsar XTE J1810-197 at frequencies of 1.4, 3.2, and 8.4 GHz. We find that the pulsed emission is nearly 100% linearly polarized. The position angle of linear polarization varies gently across the observed pulse profiles, varying little with observing frequency or time, even as the pulse profiles have changed dramatically over a period of 7 months. In the context of the standard pulsar "rotating vector model," there are two possible interpretations of the observed position angle swing coupled with the wide profile. In the first, the magnetic and rotation axes are substantially misaligned and the emission originates high in the magnetosphere, as seen for other young radio pulsars, and the beaming fraction is large. In the second interpretation, the magnetic and rotation axes are nearly aligned and the line of sight remains in the emission zone over almost the entire pulse phase. We deprecate this possibility because of the observed large modulation of thermal X-ray flux. We have also measured the Faraday rotation caused by the Galactic magnetic field, RM = +77 rad/m^2, implying an average magnetic field component along the line of sight of 0.5 microG.Comment: Accepted for publication in ApJ Letters. Six pages with 4 figure
    • …
    corecore