4 research outputs found

    The use of hydrazine-based derivatization reagents for improved sensitivity and detection of carbonyl containing compounds using MALDI-MSI

    Get PDF
    Hydrazine-based derivatization reagents have been used to detect the presence of the carbonyl containing glucocorticoid fluticasone proprionate in rat lung tissue by MALDI-MSI. Such reagents also act as a matrix for analysis by MALDI-MS and have been termed “reactive matrices”. Cryosections of rat lung tissue (12 μm), spotted with a range of concentrations of fluticasone proprionate, were derivatized in situ with 2,4-dinitrophenylhydrazine (DNPH) and 4-dimethylamino-6-(4-methoxy-1-naphthyl)-1,3,5-triazine-2-hydrazine (DMNTH) by the use of an acoustic reagent spotter. It has been demonstrated that DMNTH gave superior results compared to DNPH and that analysis of samples immediately after application of DMNTH resulted in the detection of the protonated hydrazone derivative ([MD + H]+) of fluticasone propionate at a concentration of 500 ng/μL. It has been further shown that a prolonged reaction time (~48 h) improves the detection limit of the protonated hydrazone derivative to 50 ng/μL and that improvements in sensitivity and limits of detection are obtained when a conventional MALDI matrix CHCA is employed in conjunction with the DNPH/DMNTH reactive matrix

    Monitoring the three-dimensional distribution of endogenous species in the lungs by matrix-assisted laser desorption/ionization mass spectrometry imaging

    Get PDF
    RATIONALE: Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) is routinely employed to monitor the distribution of compounds in tissue sections and generate 2D images. Whilst informative the images do not represent the distribution of the analyte of interest through the entire organ. The generation of 3D images is an exciting field that can provide a deeper view of the analyte of interest throughout an entire organ. METHODS: Serial sections of mouse and rat lung tissue were obtained at 120 μm depth intervals and imaged individually. Homogenate registration markers were incorporated in order to aid the final 3D image construction. Using freely available software packages, the images were stacked together to generate a 3D image that showed the distribution of endogenous species throughout the lungs. RESULTS: Preliminary tests were performed on 16 serial tissue sections of mouse lungs. A 3D model showing the distribution of phosphocholine at m/z 184.09 was constructed, which defined the external structure of the lungs and trachea. Later, a second experiment was performed using 24 serial tissue sections of the left lung of a rat. Two molecular markers, identified as [PC (32:1)+K]+ at m/z 770.51 and [PC (36:4)+K]+ at m/z 820.52 were used to generate 3D models of the parenchyma and airways, respectively. CONCLUSIONS: A straightforward method to generate 3D MALDI-MS images of selected molecules in lung tissue has been presented. Using freely available imaging software, the 3D distributions of molecules related to different anatomical features were determined
    corecore