3 research outputs found

    A SUSTAINABLE APPROACH TO IMPROVEMENT OF CORROSION PROTECTION COATINGS FOR STEEL STRUCTURES

    Get PDF
                Corrosion is a primary factor compromising the safety and service life of steel structures. Corrosion protection coatings are generally employed for protection of the steel structures that are exposed to different aggressive environments. This research evaluated the use of biobased ion exchangers as a sustainable means of improving corrosion protection coatings. Two base polymer coatings (vinyl and coal-tar epoxy) were considered.  The following types and dosages of biobased ion exchangers were evaluated in these coatings: (i) strong-base ion exchange cellulose in OH, PO4, SiO3, BO3, NO2, SO4 and NO3 forms at 1% by weight of resin; (ii) weak-acid starch citrate ion exchanger in H form at 1 wt.%; and (iii) strong-base ion exchange cellulose in OH form at 2 wt.%. In addition, a strong-base ion exchange resin in OH form was considered at 1 and 2 wt.% as control.  Different coating formulations were evaluated based on the outcomes of salt-fog corrosion, moisture resistance, pull-off strength, and abrasion resistance tests. The introduction of certain biobased ion exchangers in protective coatings was found to be an effective means of achieving improved levels of corrosion resistance, adhesion capacity, moisture stability and abrasion resistance

    Optimization of ultra-high performance concrete, quantification of characteristic features

    No full text
    An optimization experimental program was designed to identify a desired balance of key mix design parameters for an economical ultra-high-performance concrete (UHPC) mixture. The following mix design parameters were evaluated: superplasticizer content, coarse-to-fine aggregate ratio and steel fiber volume fraction. The values of packing density, water film thickness and excess paste film thickness were calculated considered in the optimization experimental program. The trends in the effects of packing density, water film thickness and excess paste film thickness on compressive strength and fresh mix flow were investigated. The results were used to identify viable ranges of these defining characteristics for the category of UHPC. Response surface analysis of the fresh mix flow and the hardened concrete compressive strength test results led to identification of the optimum values of mix design parameters. The optimum mix was found to produce a desired balance of fresh mix flow and hardened concrete compressive strength
    corecore