7,780 research outputs found

    Pulsar "Drifting"-Subpulse Polarization: No Evidence for Systematic Polarization-Angle Rotations

    Get PDF
    Polarization-angle density displays are given for pulsars B0809+74 and B2303+30, which exhibit no evidence of the systematic polarization-angle rotation within individual subpulses previously reported for these two stars. The ``drifting'' subpulses of both pulsars exhibit strikingly linear and circular polarization which appears to reflect the characteristics of two nearly orthogonally polarized emission ``modes''--along which the severe average-profile depolarization that is characteristic of their admixture at comparable overall intensities.Comment: Accepted for publication in Astronomy & Astrophysic

    Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion

    Get PDF
    We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force–length or force–velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa

    Preparation of a Series of Pyridyl Phenylureas of Potential Agricultural Interest

    Get PDF
    Substituted phenylurea derivatives of 3-amino-2-chloro-5-methylpyridine and 5-amino-2-chloro-3- methylpyridine were prepared by treating the amines with appropriately substituted phenyl isocyanates. Structure- confirming spectral data are also presented

    Public concerns and choices regarding nuclear waste repositories

    Get PDF
    Survey research on nuclear power issues conducted in the late 1970's has determined that nuclear waste management is now considered to be one of the most important nuclear power issues both by the US public and by key leadership groups. The purpose of this research was to determine the importance placed on specific issues associated with high-level waste disposal. In addition, policy option choices were asked regarding the siting of both low-level and high-level nuclear waste repositories. A purposive sampling strategy was used to select six groups of respondents. Averaged across the six respondent groups, the leakage of liquid wastes from storage tanks was seen as the most important high-level waste issue. There was also general agreement that the issue regarding water entering the final repository and carrying radioactive wastes away was second in importance. Overall, the third most important issue was the corrosion of the metal containers used in the high-level waste repository. There was general agreement among groups that the fourth most important issue was reducing safety to cut costs. The fifth most important issue was radioactive waste transportation accidents. Overall, the issues ranked sixth and seventh were, respectively, workers' safety and earthquakes damaging the repository and releasing radioactivity. The eighth most important issue, overall, was regarding explosions in the repository from too much radioactivity, which is something that is not possible. There was general agreement across all six respondent groups that the two least important issues involved people accidentally digging into the site and the issue that the repository might cost too much and would therefore raise electricity bills. These data indicate that the concerns of nuclear waste technologists and other public groups do not always overlap

    The eects of performance separability and contract type on agent eort

    Get PDF
    Abstract We report the results of an experiment on the in¯uence of performance separability and contract type on the eort levels of subjects working in an environment characterized by team eects. We demonstrate that the principal can achieve improvements in productivity through the choice of incentive scheme and/or by increasing the degree of performance separability through monitoring activities. We consider competitive, individual, and cooperative incentive schemes and two levels of performance separability. Under both the competitive and individual schemes, eort levels increase as the degree of performance separability increases. Under the cooperative scheme, eort levels are not aected by changes in the degree of performance separability.

    Mechanical correlates of the third heart sound

    Get PDF
    AbstractIn seven chronically instrumented conscious dogs, micromanometers measured left ventricular pressure, and ultrasonic dimension transducers measured left ventricular minor-axis diameter; the latter recording was filtered to examine data between 20 and 100 Hz. Acceptable external heart sounds were recorded with a phonocardiographic microphone in four of the seven dogs. With each dog sedatede, intubated and mechanically ventilated, data were obtained during hemodynamic alterations produced by volume loading, phenylephrine, calcium infusion and vena caval occlusion.Damped oscillations were noted consistently in the left ventricular diameter waveform toward the end of rapid ventricular filling. These wall vibrations, assessed by the Altered diameter, correlated well with the third heart sound (S3) on the phonocardiogram. The peak frequency of the wall vibrations increased with increased diastolic pressure (p = 0.004), probably reflecting an increase in myocardlal wall stiffness. In contrast, the amplitude of the vibrations varid directly with left ventricular filling rate (p = 0.0001).Thus, S3seemed to be related specifically to ventricular wall vibrations during rapid filling, and the spectra of the amplitude-frequency relation shifted toward the audible range with increases in diastolic pressure, wall stiffness or filling rate. Spectral analysis of S3may be useful in assessing pathologic chances in myocardial wall properties

    Demographic characteristics of Australian humpback dolphins reveal important habitat toward the southwestern limit of their range

    Get PDF
    Open Access under Creative Commons by Attribution Licence. Use, distribution and reproduction are un-restricted. Authors and original publication must be credited.ABSTRACT: The paucity of information on the recently described Australian humpback dolphin Sousa sahulensis has hindered assessment of its conservation status. Here, we applied capture-recapture models to photo-identification data collected during boat-based surveys between 2013 and 2015 to estimate the abundance, site fidelity and residence patterns of Australian humpback dolphins around the North West Cape (NWC), Western Australia. Using Pollock’s closed robust design, abundance estimates varied from 65 to 102 individuals, and POPAN open modelling yielded a super-population size of 129 individuals in the 130 km2 study area. At approximately 1 humpback dolphin per km2, this density is the highest recorded for this species. Temporary emigration was Markovian, suggesting seasonal movement in and out of the study area. Hierarchical clustering showed that 63% of individuals identified exhibited high levels of site fidelity. Analysis of lagged identification rates indicated dolphins use the study area regularly, following a movement model characterised by emigration and re-immigration. These density, site fidelity and residence patterns indicate that the NWC is an important habitat toward the southwestern limit of this species’ range. Much of the NWC study area lies within a Marine Protected Area, offering a regulatory framework on which to base the management of human activities with the potential to impact this threatened species. Our methods provide a methodological framework to be used in future environmental impact assessments, and our findings represent a baseline from which to develop long-term studies to gain a more complete understanding of Australian humpback dolphin population dynamics

    High quality factor gigahertz frequencies in nanomechanical diamond resonators

    Full text link
    We report actuation and detection of gigahertz-range resonance frequencies in nano-crystalline diamond mechanical resonators. High order transverse vibration modes are measured in coupled-beam resonators exhibiting frequencies up to 1.441 GHz. The cantilever-array design of the resonators translates the gigahertz-range resonant motion of micron-long cantilever elements to the displacement of the central supporting structure. Use of nano-crystalline diamond further increases the frequency compared to single crystal silicon by a factor of three. High clamping losses usually associated with micron-sized straight beams are suppressed in the periodic geometry of our resonators, allowing for high quality factors exceeding 20,000 above 500 MHz.Comment: 5 pages, two figures, one table, two-column format. Related papers can be found at http://nano.bu.edu

    Chemistry-induced Intrinsic Stress Variations During the Chemical Vapor Deposition of Polycrystalline Diamond

    Get PDF
    Intrinsic tensile stresses in polycrystalline films are often attributed to the coalescence of neighboring grains during the early stages of film growth, where the energy decrease associated with converting two free surfaces into a grain boundary provides the driving force for creating tensile stress. Several recent models have analyzed this energy trade off to establish relationships between the stress and the surface∕interfacial energy driving force, the elastic properties of the film, and the grain size. To investigate these predictions, experiments were conducted with diamond films produced by chemical vapor deposition. A multistep processing procedure was used to produce films with significant variations in the tensile stress, but with essentially identical grain sizes. The experimental results demonstrate that modest changes in the deposition chemistry can lead to significant changes in the resultant tensile stresses. Two general approaches were considered to reconcile this data with existing models of stress evolution. Geometric effects associated with the shape of the growing crystal were evaluated with a finite element model of stress evolution, and variations in the surface∕interfacial energy driving force were assessed in terms of both chemical changes in the deposition atmosphere and differences in the crystal growth morphology. These attempts to explain the experimental results were only partially successful, which suggests that other factors probably affect intrinsic tensile stress evolution due to grain boundary formation
    • …
    corecore