8,246 research outputs found

    Anatomical and biomechanical traits of broiler chickens across ontogeny. Part II. Body segment inertial properties and muscle architecture of the pelvic limb

    Get PDF
    In broiler chickens, genetic success for desired production traits is often shadowed by welfare concerns related to musculoskeletal health. Whilst these concerns are clear, a viable solution is still elusive. Part of the solution lies in knowing how anatomical changes in afflicted body systems that occur across ontogeny influence standing and moving. Here, to demonstrate these changes we quantify the segment inertial properties of the whole body, trunk (legs removed) and the right pelvic limb segments of five broilers at three different age groups across development. We also consider how muscle architecture (mass, fascicle length and other properties related to mechanics) changes for selected muscles of the pelvic limb. All broilers used had no observed lameness, but we document the limb pathologies identified post mortem, since these two factors do not always correlate, as shown here. The most common leg disorders, including bacterial chondronecrosis with osteomyelitis and rotational and angular deformities of the lower limb, were observed in chickens at all developmental stages. Whole limb morphology is not uniform relative to body size, with broilers obtaining large thighs and feet between four and six weeks of age. This implies that the energetic cost of swinging the limbs is markedly increased across this growth period, perhaps contributing to reduced activity levels. Hindlimb bone length does not change during this period, which may be advantageous for increased stability despite the increased energetic costs. Increased pectoral muscle growth appears to move the centre of mass cranio-dorsally in the last two weeks of growth. This has direct consequences for locomotion (potentially greater limb muscle stresses during standing and moving). Our study is the first to measure these changes in the musculoskeletal system across growth in chickens, and reveals how artificially selected changes of the morphology of the pectoral apparatus may cause deficits in locomotion

    Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion

    Get PDF
    We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force–length or force–velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa

    Preparation of a Series of Pyridyl Phenylureas of Potential Agricultural Interest

    Get PDF
    Substituted phenylurea derivatives of 3-amino-2-chloro-5-methylpyridine and 5-amino-2-chloro-3- methylpyridine were prepared by treating the amines with appropriately substituted phenyl isocyanates. Structure- confirming spectral data are also presented

    A Strong Upper Limit on the Pulsed Radio Luminosity of the Compact Object 1RXS J141256.0+792204

    Full text link
    The ROSAT X-ray source 1RXS J141256.0+792204 has recently been identified as a likely compact object whose properties suggest it could be a very nearby radio millisecond pulsar at d = 80 - 260pc. We investigated this hypothesis by searching for radio pulsations using the Westerbork Synthesis Radio Telescope. We observed 1RXS J141256.0+792204 at 385 and 1380MHz, recording at high time and frequency resolution in order to maintain sensitivity to millisecond pulsations. These data were searched both for dispersed single pulses and using Fourier techniques sensitive to constant and orbitally modulated periodicities. No radio pulsations were detected in these observations, resulting in pulsed radio luminosity limits of L_400 ~ 0.3 (d/250pc)^2 mJy kpc^2 and L_1400 ~ 0.03 (d/250pc)^2 mJy kpc^2 at 400 and 1400MHz respectively. The lack of detectable radio pulsations from 1RXS J141256.0+792204 brings into question its identification as a nearby radio pulsar, though, because the pulsar could be beamed away from us, this hypothesis cannot be strictly ruled out.Comment: To appear in A&A. 3 page

    Late Miocene to early Pliocene stratigraphic record in northern Taranaki Basin: Condensed sedimentation ahead of Northern Graben extension and progradation of the modern continental margin

    Get PDF
    The middle Pliocene-Pleistocene progradation of the Giant Foresets Formation in Taranaki Basin built up the modern continental margin offshore from western North Island. The late Miocene to early Pliocene interval preceding this progradation was characterised in northern Taranaki Basin by the accumulation of hemipelagic mudstone (Manganui Formation), volcaniclastic sediments (Mohakatino Formation), and marl (Ariki Formation), all at bathyal depths. The Manganui Formation has generally featureless wireline log signatures and moderate to low amplitude seismic reflection characteristics. Mohakatino Formation is characterised by a sharp decrease in the GR log value at its base, a blocky GR log motif reflecting sandstone packets, and erratic resistivity logs. Seismic profiles show bold laterally continuous reflectors. The Ariki Formation has a distinctive barrel-shaped to blocky GR log motif. This signature is mirrored by the SP log and often by an increase in resistivity values through this interval. The Ariki Formation comprises (calcareous) marl made up of abundant planktic foraminifera, is 109 m thick in Ariki-1, and accumulated over parts of the Western Stable Platform and beneath the fill of the Northern Graben. It indicates condensed sedimentation reflecting the distance of the northern region from the contemporary continental margin to the south

    Letter from W. H. Elson, Edwin B. Cox, C. N. Kendall, F. T. Oldt, and A. W. Rankin

    Get PDF
    Letter concerning resolutions being voted on concerning the National Educational Association

    Effects of interleukin-3 on myelosuppression induced by chemotherapy for ovarian cancer and small cell undifferentiated tumours.

    Get PDF
    Two clinical studies were undertaken to study the toxicity profile and effects of interleukin-3 (rhIL-3) on chemotherapy-induced myelosuppression. Fifteen patients with recurrent ovarian carcinoma were treated with high dose carboplatin (800 mg m-2). All patients received 5.0 micrograms/kg/d rhIL-3 subcutaneously but timing and duration of rhIL-3 treatment differed. Constitutional symptoms were the major toxicity and in addition to the carboplatin-induced nausea and vomiting the combination was poorly tolerated. In 5/15 patients receiving high dose carboplatin rhIL-3 administration was discontinued due to nephrotoxicity (2 x), hypotension, severe malaise and bone pain. In this study, rhIL-3 ameliorated chemotherapy-induced neutropenia as well as thrombocytopenia and reduced the requirement for platelet transfusions in the second cycle of chemotherapy. However, rhIL-3 failed to prevent cumulative platelet toxicity. In the second study 12 patients with small cell undifferentiated cancers were treated with carboplatin, etoposide and ifosfamide. Three dose levels of rhIL-3 were explored (0.125, 5.0 and 7.5 micrograms/kg/d). In this study, toxicity of the treatment was mild, however, no beneficial haematologic effects of rhIL-3 could be demonstrated. In conclusion, the haematological effects of rhIL-3 were modest and dependent on the chemotherapeutic regimen, timing and duration of rhIL-3 treatment (in relation to the expected nadir). In general rhIL-3-induced toxicity was mild, but combination with high dose carboplatin could be hazardous if rhIL-3 is initiated at 24 h after the cytostatic agent
    corecore