56 research outputs found
The compositional and evolutionary logic of metabolism
Metabolism displays striking and robust regularities in the forms of
modularity and hierarchy, whose composition may be compactly described. This
renders metabolic architecture comprehensible as a system, and suggests the
order in which layers of that system emerged. Metabolism also serves as the
foundation in other hierarchies, at least up to cellular integration including
bioenergetics and molecular replication, and trophic ecology. The
recapitulation of patterns first seen in metabolism, in these higher levels,
suggests metabolism as a source of causation or constraint on many forms of
organization in the biosphere.
We identify as modules widely reused subsets of chemicals, reactions, or
functions, each with a conserved internal structure. At the small molecule
substrate level, module boundaries are generally associated with the most
complex reaction mechanisms and the most conserved enzymes. Cofactors form a
structurally and functionally distinctive control layer over the small-molecule
substrate. Complex cofactors are often used at module boundaries of the
substrate level, while simpler ones participate in widely used reactions.
Cofactor functions thus act as "keys" that incorporate classes of organic
reactions within biochemistry.
The same modules that organize the compositional diversity of metabolism are
argued to have governed long-term evolution. Early evolution of core
metabolism, especially carbon-fixation, appears to have required few
innovations among a small number of conserved modules, to produce adaptations
to simple biogeochemical changes of environment. We demonstrate these features
of metabolism at several levels of hierarchy, beginning with the small-molecule
substrate and network architecture, continuing with cofactors and key conserved
reactions, and culminating in the aggregation of multiple diverse physical and
biochemical processes in cells.Comment: 56 pages, 28 figure
- …