98 research outputs found

    NOVEL DELIVERY APPROACHES OF CO-TRIMOXAZOLE FOR RECREATING ITS POTENTIAL USE-A REVIEW

    Get PDF
    Co-trimoxazole appropriates to category of broad-spectrum antimicrobial. They are active upon administration in vitro against an extensive collection of microorganisms. Their application in medical field has roughly spanned over decade now. There are numerous approaches that were progressed for improving their effectiveness towards their antimicrobial potency. However, routine use of this could accelerate the chance of bacterial resistance, and portrait it ineffective when required to treat infection. Consequently, newer investigations are necessary to keep the drug effective by minimise the development of resistance and maximise its safe use. Safe use is meant by safe delivery of drug in low dose, low frequency at the targeted molecule by effective ways. This can be achieved by using nanocarrier systems as they possess smart characteristics of effective drug delivery. These nanocarrier systems are including nanoparticle, liposomes, nanogels etc. Present review article deals with the historical perspectives with regards to co-trimoxazole, their mechanism of act/resistance and spectrum of activity in first section. In second portion different novel carriers, importance and application of nanogels, rational for co-trimoxazole nanogels are discussed. In conclusion, different literatures have proved the efficacy of nanogels in delivery of antimicrobial drug similar to co-trimoxazole. In the present time very less data is available for delivery of this drug with novel carriers. Therefore, this review aims to encourage researchers for creating some new findings in this perspective

    Extracts of tamarillo, horned melon, and raspberries, but not extract of pear, inhibit human blood platelet aggregation: Investigating the underlying factors for their differential mechanisms

    Get PDF
    Fruit extracts may be cardioprotective via favorable modulation of platelet-blood vessel interaction. We here show that sugar-free extracts of tamarillo, horned melon (kiwano), and raspberry in a dose-dependent manner inhibited ADP-induced platelet aggregation in platelet-rich plasma. In contrast, pear extract had no such effect. Furthermore, analysisof untargeted metabolites revealed the presence of platelet inhibitory components such as benzoic acid, caffeic acid, and gallic acid in the sugar-free extracts of tamarillo, raspberry, and kiwano, but not in pear extract. All these three fruit extracts inhibited the platelet production of TxB2 and the release of platelet factor 4. In conclusion, our work suggests that tamarillo, raspberry, and kiwano inhibit platelet aggregation partly due to the high levels of anti-platelet compounds such as benzoic, caffeic, and gallic acids

    Maternal obesity and gut microbiota are associated with fetal brain development

    Get PDF
    Obesity in pregnancy induces metabolic syndrome, low-grade inflammation, altered endocrine factors, placental function, and the maternal gut microbiome. All these factors impact fetal growth and development, including brain development. The lipid metabolic transporters of the maternalfetal- placental unit are dysregulated in obesity. Consequently, the transport of essential long-chain PUFAs for fetal brain development is disturbed. The mother’s gut microbiota is vital in maintaining postnatal energy homeostasis and maternal-fetal immune competence. Obesity during pregnancy changes the gut microbiota, affecting fetal brain development. Obesity and a high-fat diet in pregnancy can induce placental and intrauterine inflammation and thus influence the neurodevelopmental outcomes of the offspring. Several epidemiological studies observed an association between maternal obesity and adverse neurodevelopment. This review discusses the effects of maternal obesity and gut microbiota on fetal neurodevelopment outcomes. In addition, the possible mechanisms of the impacts of obesity and gut microbiota on fetal brain development are discussed

    Evaluation of the equivalence of different intakes of Fruitflow in affecting platelet aggregation and thrombin generation capacity in a randomized, double-blinded pilot study in male subjects

    Get PDF
    Background The water-soluble tomato extract, Fruitflow® is a dietary antiplatelet which can be used to lower platelet aggregability in primary preventative settings. We carried out a pilot study to investigate the range of intakes linked to efficacy and to make an initial assessment of variability in response to Fruitflow®. Methods Platelet response to adenosine diphosphate (ADP) agonist and thrombin generation capacity were monitored at baseline and 24 h after consuming 0, 30, 75, 150 or 300 mg of Fruitflow® in a randomized, double-blinded crossover study in male subjects 30–65 years of age (N = 12). Results were evaluated for equivalence to the standard 150 mg dose. Results Results showed that the changes from baseline aggregation and thrombin generation observed after the 75 mg, 150 mg, and 300 mg supplements were equivalent. Aggregation was reduced from baseline by − 12.9 ± 17.7%, − 12.0 ± 13.9% and − 17.7 ± 15.7% respectively, while thrombin generation capacity fell by − 8.6 ± 4.1%, − 9.2 ± 3.1% and − 11.3 ± 2.3% respectively. Effects observed for 0 mg and 30 mg supplements were non-equivalent to 150 mg and not different from baseline (aggregation changed by 3.0 ± 5.0% and − 0.7 ± 10.2% respectively, while thrombin generation changed by 0.8 ± 3.0% and 0.8 ± 3.1% respectively). Conclusions The data suggest that the efficacious range for Fruitflow® lies between 75 mg and 300 mg, depending on the individual. It may be pertinent to personalize the daily intake of Fruitflow® depending on individual platelet response. Trial registration ISRCTN53447583, 24/02/2021

    Thermodynamics of Cadmium Sorption on Different Soils of West Bengal, India

    Get PDF
    A sorption study was conducted on different soils collected from five agroecological zones of West Bengal, India, to understand the soil environmental behavior and fate of cadmium. For this purpose batch adsorption experiments were carried out at the native soil pH and at three different temperatures (25 ∘ C, 35 ∘ C, and 45 ∘ C). The adsorption data fitted by a linear least squares technique to the different sorption isotherms. Most data obtained give the good fit to both Freundlich and modified Langmuir isotherms, but they are not consistent with the linear Langmuir adsorption model. Thermodynamic parameters, namely, thermodynamics equilibrium constant at a particular temperature ( 0 ), Gibbs free energy at a particular temperature (Δ 0 ), and change of enthalpy (Δ 0 ) and change of entropy at temperature (Δ 0 ), were also determined by applying sorption value and concentrations of Cd in equilibrium solution within the temperature range. The thermodynamic parameters revealed that Cd sorption increases as the values of 0 , Δ 0 , Δ 0 , and Δ 0 were increased on reaction temperatures. The spontaneous sorption reaction can be concluded due to high values of Δ 0 . The positive values of Δ 0 indicated that the Cd sorption is an endothermic one. Under these present conditions, the soil and its components possibly supply a number of sites having different adsorption energies for cadmium sorption

    Bioactive food components and their inhibitory actions in multiple platelet pathways

    Get PDF
    In addition to hemostasis and thrombosis, blood platelets are involved in various processes such as inflammation, infection, immunobiology, cancer metastasis, wound repair and angiogenesis. Platelets\u27 hemostatic and non-hemostatic functions are mediated by the expression of various membrane receptors and the release of proteins, ions and other mediators. Therefore, specific activities of platelets responsible for the non-hemostatic disease are to be inhibited while leaving the platelet\u27s hemostatic function unaffected. Platelets\u27 anti-aggregatory property has been used as a primary criterion for antiplatelet drugs/bioactives; however, their non-hemostatic activities are not well known. This review describes the hemostatic and non-hemostatic function of human blood platelets and the modulatory effects of bioactive food components. PRACTICAL APPLICATIONS: In this review, we have discussed the antiplatelet effects of several food components. These bioactive compounds inhibit both hemostatic and non-hemostatic pathways involving blood platelet. Platelets have emerged as critical biological factors of normal and pathologic vascular healing and other diseases such as cancers and inflammatory and immune disorders. The challenge for therapeutic intervention in these disorders will be to find drugs and bioactive compounds that preferentially block specific sites implicated in emerging roles of platelets\u27 complicated contribution to inflammation, tumour growth, or other disorders while leaving at least some of their hemostatic function intact

    Combined DFT, SCAPS-1D, and wxAMPS frameworks for design optimization of efficient Cs2BiAgI6-based perovskite solar cells with different charge transport layers

    Full text link
    In this study, combined DFT, SCAPS-1D, and wxAMPS frameworks are used to investigate the optimized designs of Cs2BiAgI6 double perovskite-based solar cells. The first-principle calculation is employed to investigate the structural stability, optical responses, and electronic contribution of the constituent elements in Cs2BiAgI6 absorber material, where SCAPS-1D and wxAMPS simulators are used to scrutinize different configurations of Cs2BiAgI6 solar cells. Here, PCBM, ZnO, TiO2, C60, IGZO, SnO2, WS2, and CeO2 are used as ETL, and Cu2O, CuSCN, CuSbS2, NiO, P3HT, PEDOT: PSS, Spiro-MeOTAD, CuI, CuO, V2O5, CBTS, CFTS are used as HTL, and Au is used as a back contact. About ninety-six combinations of Cs2BiAgI6-based solar cell structures are investigated, in which eight sets of solar cell structures are identified as the most efficient structures. Besides, holistic investigation on the effect of different factors such as the thickness of different layers, series and shunt resistances, temperature, capacitance, Mott-Schottky and generation-recombination rates, and J-V (current-voltage density) and QE (quantum efficiency) characteristics is performed. The results show CBTS as the best HTL for Cs2BiAgI6 with all eight ETLs used in this work, resulting in a power conversion efficiency (PCE) of 19.99%, 21.55%, 21.59%, 17.47%, 20.42%, 21.52%, 14.44%, 21.43% with PCBM, TiO2, ZnO, C60, IGZO, SnO2, CeO2, WS2, respectively. The proposed strategy may pave the way for further design optimization of lead-free double perovskite solar cells.Comment: 36 pages, 14 figures, 6 table

    A Review of Applications, Prospects, and Challenges of Proton-Conducting Zirconates in Electrochemical Hydrogen Devices

    Full text link
    In the future, when fossil fuels are exhausted, alternative energy sources will be essential for everyday needs. Hydrogen-based energy can play a vital role in this aspect. This energy is green, clean, and renewable. Elec-trochemical hydrogen devices have been used extensively in nuclear power plants to manage hydrogen-based renewable fuel. Doped zirconate materials are commonly used as an electrolyte in these electrochemical devices. These materials have excellent physical stability and high proton transport numbers, which make them suitable for multiple applications. Doping enhances the physical and electronic properties of zirconate materials and makes them ideal for practical applications. This review highlights the applications of zirconate-based pro-ton-conducting materials in electrochemical cells, particularly in tritium monitors, tritium recovery, hydrogen sensors, and hydrogen pump systems. The central section of this review summarizes recent investigations and provides a comprehensive insight into the various doping schemes, experimental setup, instrumentation, op-timum operating conditions, morphology, composition, and performance of zirconate electrolyte materials. In addition, different challenges that are hindering zirconate materials from achieving their full potential in elec-trochemical hydrogen devices are discussed. Finally, this paper lays out a few pathways for aspirants who wish to undertake research in this field.Comment: 31 pages, 13 figure
    • …
    corecore