9 research outputs found

    A trigger-substrate model for smiling during an automated formative quiz: engagement is the substrate, not frustration

    Get PDF
    INTRODUCTION: Automated tutoring systems aim to respond to the learner’s cognitive state in order to maintain engagement. The end-user’s state might be inferred by interactive timings, bodily movements or facial expressions. Problematic computerized stimuli are known to cause smiling during periods of frustration. METHODS: Forty-four seated, healthy participants (age range 18-35, 18 male) used a handheld trackball to answer a computer-presented, formative, 3-way multiple choice geography quiz, with 9 questions, lasting a total of 175 seconds. Frontal facial videos (10 Hz) were collected with a webcam and processed for facial expressions by CrowdEmotion using a pattern recognition algorithm. Interactivity was recorded by a keystroke logger (Inputlog 5.2). Subjective responses were collected immediately after each quiz using a panel of visual analogue scales (VAS). RESULTS: Smiling was fie-fold enriched during the instantaneous feedback segments of the quiz, and this was correlated with VAS ratings for engagement but not with happiness or frustration. Nevertheless, smiling rate was significantly higher after wrong answers compared to correct ones, and frustration was correlated with the number of questions answered incorrectly. CONCLUSION: The apparent disconnect between the increased smiling during incorrect answers but the lack of correlation between VAS frustration and smiles suggests a trigger-substrate model where engagement is the permissive substrate, while the noises made by the quiz after wrong answers may be the trigger

    Photobiomodulation preserves mitochondrial redox state and is retinoprotective in a rodent model of retinitis pigmentosa

    Get PDF
    Photobiomodulation (PBM) by far-red (FR) to near-infrared (NIR) light has been demonstrated to restore the function of damaged mitochondria, increase the production of cytoprotective factors and prevent cell death. Our laboratory has shown that FR PBM improves functional and structural outcomes in animal models of retinal injury and retinal degenerative disease. The current study tested the hypothesis that a brief course of NIR (830 nm) PBM would preserve mitochondrial metabolic state and attenuate photoreceptor loss in a model of retinitis pigmentosa, the P23H transgenic rat. P23H rat pups were treated with 830 nm light (180 s; 25 mW/cm2; 4.5 J/cm2) using a light-emitting diode array (Quantum Devices, Barneveld, WI) from postnatal day (p) 10 to p25. Sham-treated rats were restrained, but not treated with 830 nm light. Retinal metabolic state, function and morphology were assessed at p30 by measurement of mitochondrial redox (NADH/FAD) state by 3D optical cryo-imaging, electroretinography (ERG), spectral-domain optical coherence tomography (SD-OCT), and histomorphometry. PBM preserved retinal metabolic state, retinal function, and retinal morphology in PBM-treated animals compared to the sham-treated group. PBM protected against the disruption of the oxidation state of the mitochondrial respiratory chain observed in sham-treated animals. Scotopic ERG responses over a range of flash intensities were significantly greater in PBM-treated rats compared to sham controls. SD-OCT studies and histological assessment showed that PBM preserved the structural integrity of the retina. These findings demonstrate for the first time a direct effect of NIR PBM on retinal mitochondrial redox status in a well-established model of retinal disease. They show that chronic proteotoxic stress disrupts retinal bioenergetics resulting in mitochondrial dysfunction, and retinal degeneration and that therapies normalizing mitochondrial metabolism have considerable potential for the treatment of retinal degenerative disease

    Behavior change interventions and policies influencing primary healthcare professionals’ practice—an overview of reviews

    Full text link

    Near-infrared spectroscopy muscle oximetry of patients with postural orthostatic tachycardia syndrome

    No full text
    Postural orthostatic tachycardia syndrome (POTS) is a disabling condition characterized by orthostatic intolerance with tachycardia in the absence of drop-in blood pressure. A custom-built near-infrared spectroscopy device (NIRS) is applied to monitor the muscle oxygenation, noninvasively in patients undergoing incremental head-up tilt table (HUT). Subjects (6 POTS patients and 6 healthy controls) underwent 30mins of 70∘ on a HUT. The results showed a significant difference in deoxyhemoglobin (Hb), change-in-oxygenation (ΔOxy) and blood volume (ΔBV) between patients and healthy controls. However, oxyhemoglobin (HbO2) showed a significantly faster rate of change in the healthy controls during the first 10mins of the tilt and during the recovery. This NIRS muscle oximetry tool provides quantitative measurements of blood oxygenation monitoring in diseases such as POTS
    corecore