6 research outputs found

    Insights into the Pathogenesis of Anaplastic Large-Cell Lymphoma through Genome-wide DNA Methylation Profiling.

    Get PDF
    Aberrant DNA methylation patterns in malignant cells allow insight into tumor evolution and development and can be used for disease classification. Here, we describe the genome-wide DNA methylation signatures of NPM-ALK-positive (ALK+) and NPM-ALK-negative (ALK-) anaplastic large-cell lymphoma (ALCL). We find that ALK+ and ALK- ALCL share common DNA methylation changes for genes involved in T cell differentiation and immune response, including TCR and CTLA-4, without an ALK-specific impact on tumor DNA methylation in gene promoters. Furthermore, we uncover a close relationship between global ALCL DNA methylation patterns and those in distinct thymic developmental stages and observe tumor-specific DNA hypomethylation in regulatory regions that are enriched for conserved transcription factor binding motifs such as AP1. Our results indicate similarity between ALCL tumor cells and thymic T cell subsets and a direct relationship between ALCL oncogenic signaling and DNA methylation through transcription factor induction and occupancy.G.E. was funded by the Austrian Science Foundation (FWF) (P 27616 and V 102). M.R.H. was supported by a L’OrĂ©al for Women in Science grant. S.D.T. receives funding from Bloodwise (formerly Leukaemia and Lymphoma Research). L.K. has been funded by the FWF (P 26011 and P 29251), as well as the MSCA-ITN-2015-ETN ALKATRAS (No. 675712). D.J.W. is a paid consultant for Zymo Research Corporation.This is the final version of the article. It first appeared from Elsevier (Cell Press) via http://dx.doi.org/10.1016/j.celrep.2016.09.01

    Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons

    No full text
    Type I interferons (IFN-1s) are antiviral cytokines that suppress blood production while paradoxically inducing hematopoietic stem cell (HSC) proliferation. Here, we clarify the relationship between the proliferative and suppressive effects of IFN-1s on HSC function during acute and chronic IFN-1 exposure. We show that IFN-1–driven HSC proliferation is a transient event resulting from a brief relaxation of quiescence-enforcing mechanisms in response to acute IFN-1 exposure, which occurs exclusively in vivo. We find that this proliferative burst fails to exhaust the HSC pool, which rapidly returns to quiescence in response to chronic IFN-1 exposure. Moreover, we demonstrate that IFN-1–exposed HSCs with reestablished quiescence are largely protected from the killing effects of IFNs unless forced back into the cell cycle due to culture, transplantation, or myeloablative treatment, at which point they activate a p53-dependent proapoptotic gene program. Collectively, our results demonstrate that quiescence acts as a safeguard mechanism to ensure survival of the HSC pool during chronic IFN-1 exposure. We show that IFN-1s can poise HSCs for apoptosis but induce direct cell killing only upon active proliferation, thereby establishing a mechanism for the suppressive effects of IFN-1s on HSC function

    Additional file 1: Figure S1. of Identifying aggressive prostate cancer foci using a DNA methylation classifier

    No full text
    Sample purity. Figure S2. Sample dissimilarity. Figure S3. Unsupervised clustering and heatmaps. Figure S4. Input probes for GLMnet analysis. Figure S5. Distribution of clinical information for the 312 TCGA tumor samples predicted by our classifier. Figure S6. Beeswarm plots. Figure S7. Clinical follow-up information for predicted TCGA tumor samples. Figure S8. Density graph of T-PL dist 2. Table S1. Patient information. LN lymph node. Table S2. PC foci aggressiveness by patient. Table S3. 25-probe aggressiveness classifier. (PDF 1585 kb

    Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal

    Full text link
    Haematopoietic stem cells (HSCs) maintain lifelong blood production and increase blood cell numbers in response to chronic and acute injury. However, the mechanism(s) by which inflammatory insults are communicated to HSCs and their consequences for HSC activity remain largely unknown. Here, we demonstrate that interleukin-1 (IL-1), which functions as a key pro-inflammatory 'emergency' signal, directly accelerates cell division and myeloid differentiation of HSCs through precocious activation of a PU.1-dependent gene program. Although this effect is essential for rapid myeloid recovery following acute injury to the bone marrow, chronic IL-1 exposure restricts HSC lineage output, severely erodes HSC self-renewal capacity, and primes IL-1-exposed HSCs to fail massive replicative challenges such as transplantation. Importantly, these damaging effects are transient and fully reversible on IL-1 withdrawal. Our results identify a critical regulatory circuit that tailors HSC responses to acute needs, and is likely to underlie deregulated blood homeostasis in chronic inflammation conditions
    corecore