2 research outputs found

    Genome-Wide identification and expression analysis of metal tolerance protein gene family in Medicago truncatula under a broad range of heavy metal stress

    Get PDF
    Metal tolerance proteins (MTPs) encompass plant membrane divalent cation transporters to specifically participate in heavy metal stress resistance and mineral acquisition. However, the molecular behaviors and biological functions of this family in Medicago truncatula are scarcely known. A total of 12 potential MTP candidate genes in the M. truncatula genome were successfully identified and analyzed for a phylogenetic relationship, chromosomal distributions, gene structures, docking analysis, gene ontology, and previous gene expression. M. truncatula MTPs (MtMTPs) were further classified into three major cation diffusion facilitator (CDFs) groups: Mn-CDFs, Zn-CDFs, and Fe/Zn-CDFs. The structural analysis of MtMTPs displayed high gene similarity within the same group where all of them have cation_efflux domain or ZT_dimer. Cis-acting element analysis suggested that various abiotic stresses and phytohormones could induce the most MtMTP gene transcripts. Among all MTPs, PF16916 is the specific domain, whereas GLY, ILE, LEU, MET, ALA, SER, THR, VAL, ASN, and PHE amino acids were predicted to be the binding residues in the ligand-binding site of all these proteins. RNA-seq and gene ontology analysis revealed the significant role of MTP genes in the growth and development of M. truncatula. MtMTP genes displayed differential responses in plant leaves, stems, and roots under five divalent heavy metals (Cd2+, Co2+, Mn2+, Zn2+, and Fe2+). Ten, seven, and nine MtMTPs responded to at least one metal ion treatment in the leaves, stems, and roots, respectively. Additionally, MtMTP1.1, MtMTP1.2, and MtMTP4 exhibited the highest expression responses in most heavy metal treatments. Our results presented a standpoint on the evolution of MTPs in M. truncatula. Overall, our study provides a novel insight into the evolution of the MTP gene family in M. truncatula and paves the way for additional functional characterization of this gene family

    Evolution analysis of FRIZZY PANICLE (FZP) orthologs explored the mutations in DNA coding sequences in the grass family (Poaceae)

    No full text
    FRIZZY PANICLE (FZP), an essential gene that controls spikelet differentiation and development in the grass family (Poaceae), prevents the formation of axillary bud meristems and is closely associated with crop yields. It is unclear whether the FZP gene or its orthologs were selected during the evolutionary process of grass species, which possess diverse spike morphologies. In the present study, we adopted bioinformatics methods for the evolutionary analysis of FZP orthologs in species of the grass family. Thirty-five orthologs with protein sequences identical to that of the FZP gene were identified from 29 grass species. Analysis of conserved domains revealed that the AP2/ERF domains were highly conserved with almost no amino acid mutations. However, species of the tribe Triticeae, genus Oryza, and C4 plants exhibited more significant amino acid mutations in the acidic C-terminus region. Results of the phylogenetic analysis showed that the 29 grass species could be classified into three groups, namely, Triticeae, Oryza, and C4 plants. Within the Triticeae group, the FZP genes originating from the same genome were classified into the same sub-group. When selection pressure analysis was performed, significant positive selection sites were detected in species of the Triticeae and Oryza groups. Our results show that the FZP gene was selected during the grass family’s evolutionary process, and functional divergence may have already occurred among the various species. Therefore, researchers investigating the FZP gene’s functions should take note of the possible presence of various roles in other grass species
    corecore