100 research outputs found
Black Box Variational Inference
Variational inference has become a widely used method to approximate
posteriors in complex latent variables models. However, deriving a variational
inference algorithm generally requires significant model-specific analysis, and
these efforts can hinder and deter us from quickly developing and exploring a
variety of models for a problem at hand. In this paper, we present a "black
box" variational inference algorithm, one that can be quickly applied to many
models with little additional derivation. Our method is based on a stochastic
optimization of the variational objective where the noisy gradient is computed
from Monte Carlo samples from the variational distribution. We develop a number
of methods to reduce the variance of the gradient, always maintaining the
criterion that we want to avoid difficult model-based derivations. We evaluate
our method against the corresponding black box sampling based methods. We find
that our method reaches better predictive likelihoods much faster than sampling
methods. Finally, we demonstrate that Black Box Variational Inference lets us
easily explore a wide space of models by quickly constructing and evaluating
several models of longitudinal healthcare data
Hierarchical Implicit Models and Likelihood-Free Variational Inference
Implicit probabilistic models are a flexible class of models defined by a
simulation process for data. They form the basis for theories which encompass
our understanding of the physical world. Despite this fundamental nature, the
use of implicit models remains limited due to challenges in specifying complex
latent structure in them, and in performing inferences in such models with
large data sets. In this paper, we first introduce hierarchical implicit models
(HIMs). HIMs combine the idea of implicit densities with hierarchical Bayesian
modeling, thereby defining models via simulators of data with rich hidden
structure. Next, we develop likelihood-free variational inference (LFVI), a
scalable variational inference algorithm for HIMs. Key to LFVI is specifying a
variational family that is also implicit. This matches the model's flexibility
and allows for accurate approximation of the posterior. We demonstrate diverse
applications: a large-scale physical simulator for predator-prey populations in
ecology; a Bayesian generative adversarial network for discrete data; and a
deep implicit model for text generation.Comment: Appears in Neural Information Processing Systems, 201
Automatic Variational Inference in Stan
Variational inference is a scalable technique for approximate Bayesian
inference. Deriving variational inference algorithms requires tedious
model-specific calculations; this makes it difficult to automate. We propose an
automatic variational inference algorithm, automatic differentiation
variational inference (ADVI). The user only provides a Bayesian model and a
dataset; nothing else. We make no conjugacy assumptions and support a broad
class of models. The algorithm automatically determines an appropriate
variational family and optimizes the variational objective. We implement ADVI
in Stan (code available now), a probabilistic programming framework. We compare
ADVI to MCMC sampling across hierarchical generalized linear models,
nonconjugate matrix factorization, and a mixture model. We train the mixture
model on a quarter million images. With ADVI we can use variational inference
on any model we write in Stan
- …