203 research outputs found

    A knowledge network for a dynamic taxonomy of psychiatric disease

    Get PDF
    Current taxonomic approaches in medicine and psychiatry are limited in validity and utility. They do serve simple communication purposes for medical coding, teaching, and reimbursement, but they are not suited for the modern era with its rapid explosion of knowledge from the “omics” revolution. The National Academy of Sciences published a report entitled Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease. The authors advocate a new taxonomy that would integrate molecular data, clinical data, and health outcomes in a dynamic, iterative fashion, bringing together research, public health, and health-care delivery with the interlinked goals of advancing our understanding of disease pathogenesis and thereby improving health. As the need for an information hub and a knowledge network with a dynamic taxonomy based on integration of clinical and research data is vital, and timely, this proposal merits consideration

    7th College of Physicians Lecture -The Changing Face of Medicine, Medicine - Past, Present and Future

    Get PDF
    Introduction When we think about medicine, just like we do about other things in life in the past and the present, we usually refl ect on the good old days. On hindsight, the past always seems brighter than the present. Sometimes, it is worth looking back to see how things have changed. There may be many elements in the past that are worth bringing back to the present and carrying into the future. In this paper, I will fi rst discuss some of the changes that we have seen in our lifetime. I will then outline new opportunities and challenges we face with the practice of medicine in the 21st century

    Development of a liposomal nanodelivery system for nevirapine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The treatment of AIDS remains a serious challenge owing to high genetic variation of Human Immunodeficiency Virus type 1 (HIV-1). The use of different antiretroviral drugs (ARV) is significantly limited by severe side-effects that further compromise the quality of life of the AIDS patient. In the present study, we have evaluated a liposome system for the delivery of nevirapine, a hydrophobic non-nucleoside reverse transcriptase inhibitor. Liposomes were prepared from egg phospholipids using thin film hydration. The parameters of the process were optimized to obtain spherical liposomes below 200 nm with a narrow polydispersity. The encapsulation efficiency of the liposomes was optimized at different ratios of egg phospholipid to cholesterol as well as drug to total lipid. The data demonstrate that encapsulation efficiency of 78.14% and 76.25% were obtained at egg phospholipid to cholesterol ratio of 9:1 and drug to lipid ratio of 1:5, respectively. We further observed that the size of the liposomes and the encapsulation efficiency of the drug increased concomitantly with the increasing ratio of drug and lipid and that maximum stability was observed at the physiological pH. Thermal analysis of the drug encapsulated liposomes indicated the formation of a homogenous drug-lipid system. The magnitude of drug release from the liposomes was examined under different experimental conditions including in phosphate buffered saline (PBS), Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% fetal bovine serum or in the presence of an external stimulus such as low frequency ultrasound. Within the first 20 minutes 40, 60 and 100% of the drug was released when placed in PBS, DMEM or when ultrasound was applied, respectively. We propose that nevirapine-loaded liposomal formulations reported here could improve targeted delivery of the anti-retroviral drugs to select compartments and cells and alleviate systemic toxic side effects as a consequence.</p

    Variability in Frontotemporal Brain Structure: The Importance of Recruitment of African Americans in Neuroscience Research

    Get PDF
    BACKGROUND: Variation in brain structure is both genetically and environmentally influenced. The question about potential differences in brain anatomy across populations of differing race and ethnicity remains a controversial issue. There are few studies specifically examining racial or ethnic differences and also few studies that test for race-related differences in context of other neuropsychiatric research, possibly due to the underrepresentation of ethnic minorities in clinical research. It is within this context that we conducted a secondary data analysis examining volumetric MRI data from healthy participants and compared the volumes of the amygdala, hippocampus, lateral ventricles, caudate nucleus, orbitofrontal cortex (OFC) and total cerebral volume between Caucasian and African-American participants. We discuss the importance of this finding in context of neuroimaging methodology, but also the need for improved recruitment of African Americans in clinical research and its broader implications for a better understanding of the neural basis of neuropsychiatric disorders. METHODOLOGY/PRINCIPAL FINDINGS: This was a case control study in the setting of an academic medical center outpatient service. Participants consisted of 44 Caucasians and 33 ethnic minorities. The following volumetric data were obtained: amygdala, hippocampus, lateral ventricles, caudate nucleus, orbitofrontal cortex (OFC) and total cerebrum. Each participant completed a 1.5 T magnetic resonance imaging (MRI). Our primary finding in analyses of brain subregions was that when compared to Caucasians, African Americans exhibited larger left OFC volumes (F (1,68) = 7.50, p = 0.008). CONCLUSIONS: The biological implications of our findings are unclear as we do not know what factors may be contributing to these observed differences. However, this study raises several questions that have important implications for the future of neuropsychiatric research
    corecore