5 research outputs found

    Joint Strong and Weak Lensing Analysis of the Massive Cluster Field J0850+3604

    Full text link
    We present a combined strong and weak lensing analysis of the J085007.6+360428 (J0850) field, which was selected by its high projected concentration of luminous red galaxies and contains the massive cluster Zwicky 1953. Using Subaru/Suprime-Cam BVRcIci′z′BVR_{c}I_{c}i^{\prime}z^{\prime} imaging and MMT/Hectospec spectroscopy, we first perform a weak lensing shear analysis to constrain the mass distribution in this field, including the cluster at z=0.3774z = 0.3774 and a smaller foreground halo at z=0.2713z = 0.2713. We then add a strong lensing constraint from a multiply-imaged galaxy in the imaging data with a photometric redshift of z≈5.03z \approx 5.03. Unlike previous cluster-scale lens analyses, our technique accounts for the full three-dimensional mass structure in the beam, including galaxies along the line of sight. In contrast with past cluster analyses that use only lensed image positions as constraints, we use the full surface brightness distribution of the images. This method predicts that the source galaxy crosses a lensing caustic such that one image is a highly-magnified "fold arc", which could be used to probe the source galaxy's structure at ultra-high spatial resolution (<30< 30 pc). We calculate the mass of the primary cluster to be Mvir=2.93−0.65+0.71×1015 M⊙\mathrm{M_{vir}} = 2.93_{-0.65}^{+0.71} \times 10^{15}~\mathrm{M_{\odot}} with a concentration of cvir=3.46−0.59+0.70\mathrm{c_{vir}} = 3.46_{-0.59}^{+0.70}, consistent with the mass-concentration relation of massive clusters at a similar redshift. The large mass of this cluster makes J0850 an excellent field for leveraging lensing magnification to search for high-redshift galaxies, competitive with and complementary to that of well-studied clusters such as the HST Frontier Fields.Comment: Accepted for publication in The Astrophysical Journal; 14 pages, 13 figures, 3 table

    The z=0.54 LoBAL Quasar SDSS J085053.12+445122.5: II. The Nature of Partial Covering in the Broad-Absorption-Line Outflow

    Full text link
    It has been known for 20 years that the absorbing gas in broad absorption line quasars does not completely cover the continuum emission region, and that partial covering must be accounted for to accurately measure the column density of the outflowing gas. However, the nature of partial covering itself is not understood. Extrapolation of the SimBAL spectral synthesis model of the HST COS UV spectrum from SDSS J0850+4451 reported by Leighly et al. 2018 to non-simultaneous rest-frame optical and near-infrared spectra reveals evidence that the covering fraction has wavelength dependence, and is a factor of 2.5 times higher in the UV than in the optical and near-infrared bands. The difference in covering fraction can be explained if the outflow consists of clumps that are small and either structured or clustered relative to the projected size of the UV continuum emission region, and have a more diffuse distribution on size scales comparable to the near-infrared continuum emission region size. The lower covering fraction over the larger physical area results in a reduction of the measured total column density by a factor of 1.6 compared with the UV-only solution. This experiment demonstrates that we can compare rest-frame UV and near-infrared absorption lines, specifically HeI*10830, to place constraints on the uniformity of absorption gas in broad absorbing line quasars.Comment: Revised version after responding to referee repor
    corecore