8 research outputs found

    Accounting for Ecosystem Alteration Doubles Estimates of Conservation Risk in the Conterminous United States

    Get PDF
    Previous national and global conservation assessments have relied on habitat conversion data to quantify conservation risk. However, in addition to habitat conversion to crop production or urban uses, ecosystem alteration (e.g., from logging, conversion to plantations, biological invasion, or fire suppression) is a large source of conservation risk. We add data quantifying ecosystem alteration on unconverted lands to arrive at a more accurate depiction of conservation risk for the conterminous United States. We quantify ecosystem alteration using a recent national assessment based on remote sensing of current vegetation compared with modeled reference natural vegetation conditions. Highly altered (but not converted) ecosystems comprise 23% of the conterminous United States, such that the number of critically endangered ecoregions in the United States is 156% higher than when calculated using habitat conversion data alone. Increased attention to natural resource management will be essential to address widespread ecosystem alteration and reduce conservation risk

    State-and-transition simulation modeling to compare outcomes of alternative management scenarios under two natural disturbance regimes in a forested landscape in northeastern Wisconsin, USA

    No full text
    Comparisons of the potential outcomes of multiple land management strategies and an understanding of the influence of potential increases in climate-related disturbances on these outcomes are essential for long term land management and conservation planning. To provide these insights, we developed an approach that uses collaborative scenario development and state-and-transition simulation modeling to provide land managers and conservation practitioners with a comparison of potential landscapes resulting from alternative management scenarios and climate conditions, and we have applied this approach in the Wild Rivers Legacy Forest (WRLF) area in northeastern Wisconsin. Three management scenarios were developed with input from local land managers, scientists, and conservation practitioners: 1) continuation of current management, 2) expanded working forest conservation easements, and 3) cooperative ecological forestry. Scenarios were modeled under current climate with contemporary probabilities of natural disturbance and under increased probability of windthrow and wildfire that may result from climate change in this region. All scenarios were modeled for 100 years using the VDDT/TELSA modeling suite. Results showed that landscape composition and configuration were relatively similar among scenarios, and that management had a stronger effect than increased probability of windthrow and wildfire. These findings suggest that the scale of the landscape analysis used here and the lack of differences in predominant management strategies between ownerships in this region play significant roles in scenario outcomes. The approach used here does not rely on complex mechanistic modeling of uncertain dynamics and can therefore be used as starting point for planning and further analysis

    Assessing Ecosystem Condition: Use and Customization of the Vegetation Departure Metric

    No full text
    Assessment of ecosystem change often focuses on the degree of conversion and representation in networks of protected areas. While essential, these factors alone do not provide a holistic index of ecosystem conditions. Metrics that compare the current state of ecosystems to a meaningful reference condition can help identify “hidden” risks, lost functions, and provide conservation and management-relevant insights. Here we review a departure metric that can be used to measure ecosystem conditions and its implementation for all lands in the United States by the LANDFIRE Program. We then use two case studies to demonstrate how manually calculating the departure metric is used to explore under- and over-representation of structural stages. Finally, we document the assumptions, interpretation, and limitations of the departure metric, and discuss its current and possible future applications

    Assessing Ecosystem Condition: Use and Customization of the Vegetation Departure Metric

    No full text
    Assessment of ecosystem change often focuses on the degree of conversion and representation in networks of protected areas. While essential, these factors alone do not provide a holistic index of ecosystem conditions. Metrics that compare the current state of ecosystems to a meaningful reference condition can help identify “hidden” risks, lost functions, and provide conservation and management-relevant insights. Here we review a departure metric that can be used to measure ecosystem conditions and its implementation for all lands in the United States by the LANDFIRE Program. We then use two case studies to demonstrate how manually calculating the departure metric is used to explore under- and over-representation of structural stages. Finally, we document the assumptions, interpretation, and limitations of the departure metric, and discuss its current and possible future applications

    Identifying opportunity hot spots for reducing the risk of wildfire-caused carbon loss in western US conifer forests

    No full text
    The escalating climate and wildfire crises have generated worldwide interest in using proactive forest management (e.g. forest thinning, prescribed fire, cultural burning) to mitigate the risk of wildfire-caused carbon loss in forests. To estimate the risk of wildfire-caused carbon loss in western United States (US) conifer forests, we used a generalizable framework to evaluate interactions among wildfire hazard and carbon exposure and vulnerability. By evaluating where high social adaptive capacity for proactive forest management overlaps with carbon most vulnerable to wildfire-caused carbon loss, we identified opportunity hot spots for reducing the risk of wildfire-caused carbon loss. We found that relative to their total forest area, California, New Mexico, and Arizona contained the greatest proportion of carbon highly vulnerable to wildfire-caused loss. We also observed widespread opportunities in the western US for using proactive forest management to reduce the risk of wildfire-caused carbon loss, with many areas containing opportunities for simultaneously mitigating the greatest risk from wildfire to carbon and human communities. Finally, we highlighted collaborative and equitable processes that provide pathways to achieving timely climate- and wildfire-mitigation goals at opportunity hot spots
    corecore