4 research outputs found

    Timing and regulation of cohesion depletion during mammalian oogenesis

    Get PDF
    PhD ThesisSexual reproduction depends on the transmission of exactly one copy of each chromosome by the maternal and paternal gametes. This is accomplished during meiosis when diploid progenitors undergo two consecutive rounds of chromosome segregation following a single round of DNA replication. In most organisms, this relies on the establishment of bivalent chromosomes consisting of replicated parental homologues physically linked at sites of meiotic recombination. In female mammals, bivalents are formed during fetal development when the lifetime stock of primordial-stage oocytes is established. However, they are not resolved until shortly before ovulation. Extending this period beyond ~35 years results in a dramatic increase in embryo aneuploidy. Depletion of the lifetime stock of oocytes during ageing culminates in menopause. Our previous studies indicate that Rec8-containing cohesin complexes also become depleted from oocyte chromosomes during female ageing. Consistent with cohesin’s role in maintaining chromosome structure, depletion of Rec8 is associated with destabilisation of bivalents chromosomes. Nevertheless, the mechanisms and timing of cohesin depletion remain unknown. Here, I investigated the possibility that age-related cohesin depletion is a consequence of leaky inhibition of the protease separase, which cleaves Rec8 during anaphase. I found that oocyte-specific deletion of separase did not prevent depletion of oocyte cohesin during female ageing. I, therefore, conclude that age-related depletion occurs by a separase-independent mechanism. I next investigated the timing, during oogenesis, at which cohesin loss occurs. I found that cohesin is predominantly lost at the primordial stage before oocytes are recruited for growth. In addition, using an oocyte-specific deletion of Pten, I determined that this occurs independently of the decline in the ovarian stock of primordial-stage oocytes. Together, these results indicate that age-related cohesin depletion occurs at the primordial stage by a separase-independent mechanism. Other possible of mechanisms of cohesin depletion include protein damage and/or age-related deterioration of chromatin structure. From a clinical perspective, my work suggests that “rejuvenation’ of fertility by activating the residual pool of primordial oocytes is unlikely to be successful in older women.Dame Margaret Barbour and Barbour foundatio

    APC/C(Cdh1) Enables Removal of Shugoshin-2 from the Arms of Bivalent Chromosomes by Moderating Cyclin-Dependent Kinase Activity

    Get PDF
    In mammalian females, germ cells remain arrested as primordial follicles. Resumption of meiosis is heralded by germinal vesicle breakdown, condensation of chromosomes, and their eventual alignment on metaphase plates. At the first meiotic division, anaphase-promoting complex/cyclosome associated with Cdc20 (APC/C(Cdc20)) activates separase and thereby destroys cohesion along chromosome arms. Because cohesion around centromeres is protected by shugoshin-2, sister chromatids remain attached through centromeric/pericentromeric cohesin. We show here that, by promoting proteolysis of cyclins and Cdc25B at the germinal vesicle (GV) stage, APC/C associated with the Cdh1 protein (APC/C(Cdh1)) delays the increase in Cdk1 activity, leading to germinal vesicle breakdown (GVBD). More surprisingly, by moderating the rate at which Cdk1 is activated following GVBD, APC/C(Cdh1) creates conditions necessary for the removal of shugoshin-2 from chromosome arms by the Aurora B/C kinase, an event crucial for the efficient resolution of chiasmata

    APC/C(Cdh1) Enables Removal of Shugoshin-2 from the Arms of Bivalent Chromosomes by Moderating Cyclin-Dependent Kinase Activity

    Full text link
    Abstract: In mammalian females, germ cells remain arrested as primordial follicles. Resumption of meiosis is heralded by germinal vesicle breakdown, condensation of chromosomes, and their eventual alignment on metaphase plates. At the first meiotic division, anaphase-promoting complex/cyclosome associated with Cdc20 (APC/CCdc20) activates separase and thereby destroys cohesion along chromosome arms. Because cohesion around centromeres is protected by shugoshin-2, sister chromatids remain attached through centromeric/pericentromeric cohesin. We show here that, by promoting proteolysis of cyclins and Cdc25B at the germinal vesicle (GV) stage, APC/C associated with the Cdh1 protein (APC/CCdh1) delays the increase in Cdk1 activity, leading to germinal vesicle breakdown (GVBD). More surprisingly, by moderating the rate at which Cdk1 is activated following GVBD, APC/CCdh1 creates conditions necessary for the removal of shugoshin-2 from chromosome arms by the Aurora B/C kinase, an event crucial for the efficient resolution of chiasmata

    Timing and regulation of cohesin depletion during mammalian oogenesis = Momento y regulacion del agotamiento de cohesin durante la ovogenesis mamifera

    Full text link
    Abstract: Sexual reproduction depends on the transmission of exactly one copy of each chromosome by the maternal and paternal gametes. This is accomplished during meiosis when diploid progenitors undergo two consecutive rounds of chromosome segregation following a single round of DNA replication. In most organisms, this relies on the establishment of bivalent chromosomes consisting of replicated parental homologues physically linked at sites of meiotic recombination. In female mammals, bivalents are formed during fetal development when the lifetime stock of primordial-stage oocytes is established. However, they are not resolved until shortly before ovulation. Extending this period beyond ~35 years results in a dramatic increase in embryo aneuploidy. Depletion of the lifetime stock of oocytes during ageing culminates in menopause. Our previous studies indicate that Rec8-containing cohesin complexes also become depleted from oocyte chromosomes during female ageing. Consistent with cohesin’s role in maintaining chromosome structure, depletion of Rec8 is associated with destabilisation of bivalents chromosomes. Nevertheless, the mechanisms and timing of cohesin depletion remain unknown. Here, I investigated the possibility that age-related cohesion depletion is a consequence of leaky inhibition of the protease separase, which cleaves Rec8 during anaphase. I found that oocyte-specific deletion of separase did not prevent depletion of oocyte cohesin during female ageing. I, therefore, conclude that age-related depletion occurs by a separaseindependent mechanism. I next investigated the timing, during oogenesis, at which cohesin loss occurs. I found that cohesin is predominantly lost at the primordial stage before oocytes are recruited for growth. In addition, using an oocyte-specific deletion of Pten, I determined that this occurs independently of the decline in the ovarian stock of primordial-stage oocytes. Together, these results indicate that age-related cohesin depletion occurs at the primordial stage by a separase-independent mechanism. Other possible of mechanisms of cohesin depletion include protein damage and/or agerelated deterioration of chromatin structure. From a clinical perspective, my work suggests that “rejuvenation’ of fertility by activating the residual pool of primordial oocytes is unlikely to be successful in older women
    corecore