2,039 research outputs found
Urticarial Rash in a Patient with Alpha-Gal Syndrome Caused by Subcutaneous Heparin at Prophylactic Dosing: A Case Report
Introduction: We report a patient with a history of red meat allergy, or alpha-gal syndrome, who had an urticarial rash after exposure to unfractionated heparin at a dose typically used for prophylaxis of deep venous thrombosis. Although anaphylactic reactions have been reported with systemic intravenous heparin, we believe this case is the first report of an immunoglobulin E–mediated reaction to subcutaneous heparin at prophylactic dosing.
Clinical Findings: An 85-year-old male had a 3-year history of red meat allergy and was intolerant of pork and beef. He developed an immunoglobulin E–mediated allergic reaction to subcutaneous heparin at a dose of 5000 units twice daily.
Clinical Course: The patient presented to the emergency department after a fall. He had back pain and was diagnosed with a compression fracture. He was admitted to the hospital because he was unable to safely ambulate. He was treated with subcutaneous unfractionated heparin to prevent deep venous thrombosis as part of routine care. Twenty-four hours after exposure to heparin, he developed an urticarial rash. The rash resolved promptly after discontinuing heparin and excluding other potential allergic triggers.
Conclusions: In patients with alpha-gal syndrome, unfractionated heparin via a subcutaneous route at prophylactic dosing can precipitate immunoglobulin E–mediated systemic reactions and should be avoided
Association between length of storage of red blood cell units and outcome of critically ill children: a prospective observational study
INTRODUCTION: Transfusion is a common treatment in pediatric intensive care units (PICUs). Studies in adults suggest that prolonged storage of red blood cell units is associated with worse clinical outcome. No prospective study has been conducted in children. Our objectives were to assess the clinical impact of the length of storage of red blood cell units on clinical outcome of critically ill children.
METHODS: Prospective, observational study conducted in 30 North American centers, in consecutive patients aged \u3c18 years with a stay\u3eor= 48 hours in a PICU. The primary outcome measure was the incidence of multiple organ dysfunction syndrome after transfusion. The secondary outcomes were 28-day mortality and PICU length of stay. Odds ratios were adjusted for gender, age, number of organ dysfunctions at admission, total number of transfusions, and total dose of transfusion, using a multiple logistic regression model.
RESULTS: The median length of storage was 14 days in 296 patients with documented length of storage. For patients receiving blood stored \u3eor= 14 days, the adjusted odds ratio for an increased incidence of multiple organ dysfunction syndrome was 1.87 (95% CI 1.04;3.27, P = 0.03). There was also a significant difference in the total PICU length of stay (adjusted median difference +3.7 days, P \u3c 0.001) and no significant change in mortality.
CONCLUSIONS: In critically ill children, transfusion of red blood cell units stored for \u3eor= 14 days is independently associated with an increased occurrence of multiple organ dysfunction syndrome and prolonged PICU stay
Economic downturn results in tick-borne disease upsurge
<p>Abstract</p> <p>Background</p> <p>The emergence of zoonoses is due both to changes in human activities and to changes in their natural wildlife cycles. One of the most significant vector-borne zoonoses in Europe, tick-borne encephalitis (TBE), doubled in incidence in 1993, largely as a consequence of the socio-economic transition from communism to capitalism and associated environmental changes.</p> <p>Methods</p> <p>To test the effect of the current economic recession, unemployment in 2009 and various socio-economic indices were compared to weather indices (derived from principal component analyses) as predictors for the change in TBE case numbers in 2009 relative to 2004-08, for 14 European countries.</p> <p>Results</p> <p>Greatest increases in TBE incidence occurred in Latvia, Lithuania and Poland (91, 79 and 45%, respectively). The weather was rejected as an explanatory variable. Indicators of high background levels of poverty, e.g. percent of household expenditure on food, were significant predictors. The increase in unemployment in 2009 relative to 2008 together with 'in-work risk of poverty' is the only case in which a multivariate model has a second significant term.</p> <p>Conclusion</p> <p>Background socio-economic conditions determine susceptibility to risk of TBE, while increased unemployment triggered a sudden increase in risk. Mechanisms behind this result may include reduced resistance to infection through stress; reduced uptake of costly vaccination; and more exposure of people to infected ticks in their forest habitat as they make greater use of wild forest foods, especially in those countries, Lithuania and Poland, with major marketing opportunities in such products. Recognition of these risk factors could allow more effective protection through education and a vaccination programme targeted at the economically most vulnerable.</p
A Regional CO2 Observing System Simulation Experiment Using ASCENDS Observations and WRF-STILT Footprints
Knowledge of the spatiotemporal variations in emissions and uptake of CO2 is hampered by sparse measurements. The recent advent of satellite measurements of CO2 concentrations is increasing the density of measurements, and the future mission ASCENDS (Active Sensing of CO2 Emissions over Nights, Days and Seasons) will provide even greater coverage and precision. Lagrangian atmospheric transport models run backward in time can quantify surface influences ("footprints") of diverse measurement platforms and are particularly well suited for inverse estimation of regional surface CO2 fluxes at high resolution based on satellite observations. We utilize the STILT Lagrangian particle dispersion model, driven by WRF meteorological fields at 40-km resolution, in a Bayesian synthesis inversion approach to quantify the ability of ASCENDS column CO2 observations to constrain fluxes at high resolution. This study focuses on land-based biospheric fluxes, whose uncertainties are especially large, in a domain encompassing North America. We present results based on realistic input fields for 2007. Pseudo-observation random errors are estimated from backscatter and optical depth measured by the CALIPSO satellite. We estimate a priori flux uncertainties based on output from the CASA-GFED (v.3) biosphere model and make simple assumptions about spatial and temporal error correlations. WRF-STILT footprints are convolved with candidate vertical weighting functions for ASCENDS. We find that at a horizontal flux resolution of 1 degree x 1 degree, ASCENDS observations are potentially able to reduce average weekly flux uncertainties by 0-8% in July, and 0-0.5% in January (assuming an error of 0.5 ppm at the Railroad Valley reference site). Aggregated to coarser resolutions, e.g. 5 degrees x 5 degrees, the uncertainty reductions are larger and more similar to those estimated in previous satellite data observing system simulation experiments
Inelastic X-ray scattering study of the collective dynamics in liquid sodium
Inelastic X-ray scattering data have been collected for liquid sodium at
T=390 K, i.e. slightly above the melting point. Owing to the very high
instrumental resolution, pushed up to 1.5 meV, it has been possible to
determine accurately the dynamic structure factor, , in a wide
wavevector range, nm, and to investigate on the dynamical
processes underlying the collective dynamics. A detailed analysis of the
lineshape of , similarly to other liquid metals, reveals the
co-existence of two different relaxation processes with slow and fast
characteristic timescales respectively. The present data lead to the conclusion
that: i) the picture of the relaxation mechanism based on a simple viscoelastic
model fails; ii) although the comparison with other liquid metals reveals
similar behavior, the data do not exhibit an exact scaling law as the principle
of corresponding state would predict.Comment: RevTex, 7 pages, 6 eps figures. Accepted by Phys. Rev.
Testing epidemiological functional groups as predictors of avian haemosporidia patterns in southern Africa
Understanding the dynamics of multihost parasites and the roles of different host species in parasite epidemiology requires consideration of the whole animal community. Host communities may be composed of hundreds of interacting species, making it necessary to simplify the problem. One approach to summarizing the host community in a way that is relevant to the epidemiology of the parasite is to group host species into epidemiological functional groups (EpiFGs). We used EpiFGs to test our understanding of avian malaria (Plasmodium and Haemoproteus) dynamics in four communities of wetland-associated birds in southern Africa. Bird counts and captures were undertaken every 2–4 months over 2 yr and malaria was diagnosed by nested PCR. One hundred and seventy-six bird species were allocated to a set of EpiFGs according to their assumed roles in introducing and maintaining the parasite in the system. Roles were quantified as relative risks from avian foraging, roosting, and movement ecology and assumed interaction with vector species. We compared our estimated a priori risks to empirical data from 3414 captured birds from four sites and 3485 half-hour point counts. After accounting for relative avian abundance, our risk estimates significantly correlated with the observed prevalence of Haemoproteus but not Plasmodium. Although avian roosting height (for both malarial genera) and movement ecology (for Plasmodium) separately influenced prevalence, host behavior alone was not sufficient to predict Plasmodium patterns in our communities. Host taxonomy and relative abundance were also important for this parasite. Although using EpiFGs enabled us to predict the infection patterns of only one genus of heamosporidia, our approach holds promise for examining the influence of host community composition on the transmission of vector-borne parasites and identifying gaps in our understanding of host–parasite interactions. (Résumé d'auteur
StraboSpot data system for structural geology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.StraboSpot is a geologic data system that allows researchers to digitally collect, store, and share both field and laboratory data. StraboSpot is based on how geologists actually work to collect field data; although initially developed for the structural geology research community, the approach is easily extensible to other disciplines. The data system uses two main concepts to organize data: spots and tags. A spot is any observation that characterizes a specific area, a concept applicable at any spatial scale from regional to microscopic. Spots are related in a purely spatial manner, and consequently, one spot can enclose multiple other spots that themselves contain other spots. In contrast, tags provide conceptual grouping of spots, allowing linkages between spots that are independent of their spatial position.
The StraboSpot data system uses a graph database, rather than a relational database approach, to increase flexibility and to track geologically complex relationships. StraboSpot operates on two different platform types: (1) a fieldbased application that runs on iOS and Android mobile devices, which can function in either Internet-connected or disconnected environments; and (2) a web application that runs only in Internet-connected settings. We are presently engaged in incorporating microstructural data into StraboSpot, as well as expanding to include additional field-based (sedimentology, petrology) and lab-based (experimental rock deformation) data. The StraboSpot database will be linked to other existing and future databases in order to provide integration with other digital efforts in the geological sciences and allow researchers to do types of science that were not possible without easy access to digital data
Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected from migratory birds in Southern Norway
<p>Abstract</p> <p>Background</p> <p><it>Borrelia burgdorferi </it>sensu lato (s.l.) are the causative agent for Lyme borreliosis (LB), the most common tick-borne disease in the northern hemisphere. Birds are considered important in the global dispersal of ticks and tick-borne pathogens through their migration. The present study is the first description of <it>B. burgdorferi </it>prevalence and genotypes in <it>Ixodes ricinus </it>ticks feeding on birds during spring and autumn migration in Norway.</p> <p>Methods</p> <p>6538 migratory birds were captured and examined for ticks at Lista Bird Observatory during the spring and the autumn migration in 2008. 822 immature <it>I. ricinus </it>ticks were collected from 215 infested birds. Ticks were investigated for infection with <it>B. burgdorferi </it>s.l. by real-time PCR amplification of the 16S rRNA gene, and <it>B. burgdorferi </it>s.l. were thereafter genotyped by melting curve analysis after real-time PCR amplification of the <it>hbb </it>gene, or by direct sequencing of the PCR amplicon generated from the <it>rrs </it>(16S)-<it>rrl </it>(23S) intergenetic spacer.</p> <p>Results</p> <p><it>B. burgdorferi </it>s.l. were detected in 4.4% of the ticks. The most prevalent <it>B. burgdorferi </it>genospecies identified were <it>B. garinii </it>(77.8%), followed by <it>B.valaisiana </it>(11.1%), <it>B. afzelii </it>(8.3%) and <it>B. burgdorferi </it>sensu stricto (2.8%).</p> <p>Conclusion</p> <p>Infection rate in ticks and genospecies composition were similar in spring and autumn migration, however, the prevalence of ticks on birds was higher during spring migration. The study supports the notion that birds are important in the dispersal of ticks, and that they may be partly responsible for the heterogeneous distribution of <it>B. burgdorferi </it>s.l. in Europe.</p
Diffusion Quantum Monte Carlo Calculations of Excited States of Silicon
The band structure of silicon is calculated at the Gamma, X, and L wave
vectors using diffusion quantum Monte Carlo methods. Excited states are formed
by promoting an electron from the valence band into the conduction band. We
obtain good agreement with experiment for states around the gap region and
demonstrate that the method works equally well for direct and indirect
excitations, and that one can calculate many excited states at each wave
vector. This work establishes the fixed-node DMC approach as an accurate method
for calculating the energies of low lying excitations in solids.Comment: 5 pages, 1 figur
- …