8 research outputs found

    Multi-level algorithms for modularity clustering

    Full text link
    Modularity is one of the most widely used quality measures for graph clusterings. Maximizing modularity is NP-hard, and the runtime of exact algorithms is prohibitive for large graphs. A simple and effective class of heuristics coarsens the graph by iteratively merging clusters (starting from singletons), and optionally refines the resulting clustering by iteratively moving individual vertices between clusters. Several heuristics of this type have been proposed in the literature, but little is known about their relative performance. This paper experimentally compares existing and new coarsening- and refinement-based heuristics with respect to their effectiveness (achieved modularity) and efficiency (runtime). Concerning coarsening, it turns out that the most widely used criterion for merging clusters (modularity increase) is outperformed by other simple criteria, and that a recent algorithm by Schuetz and Caflisch is no improvement over simple greedy coarsening for these criteria. Concerning refinement, a new multi-level algorithm is shown to produce significantly better clusterings than conventional single-level algorithms. A comparison with published benchmark results and algorithm implementations shows that combinations of coarsening and multi-level refinement are competitive with the best algorithms in the literature.Comment: 12 pages, 10 figures, see http://www.informatik.tu-cottbus.de/~rrotta/ for downloading the graph clustering softwar

    Real-time dynamic hardware reconfiguration for processors with redundant functional units

    Get PDF
    The tiny logic elements in modern integrated circuits increase the rate of transient failures significantly. Therefore, redundancy on various levels is necessary to retain reliability. However, for mixed-criticality scenarios, the typical processor designs offer either too little fault-tolerance or too much redundancy for one part of the applications. Amongst others, we specifically address redundant processor internal functional units (FU) to cope with transient errors and support wear leveling. A real-time operating system (RTOS) was extended to control our prototypical hardware platform and, since it can be configured deterministically within few clock cycles, we are able to reconfigure the FUs dynamically, at process switching time, according to the specified critically of the running processes. Our mechanisms were integrated into the Plasma processor and the Plasma-RTOS. With few changes to the original software code, it was, for example, possible to quickly change from fault-detecting to fault-correcting modes of the processor on demand

    Searching for network modules

    Full text link
    When analyzing complex networks a key target is to uncover their modular structure, which means searching for a family of modules, namely node subsets spanning each a subnetwork more densely connected than the average. This work proposes a novel type of objective function for graph clustering, in the form of a multilinear polynomial whose coefficients are determined by network topology. It may be thought of as a potential function, to be maximized, taking its values on fuzzy clusterings or families of fuzzy subsets of nodes over which every node distributes a unit membership. When suitably parametrized, this potential is shown to attain its maximum when every node concentrates its all unit membership on some module. The output thus is a partition, while the original discrete optimization problem is turned into a continuous version allowing to conceive alternative search strategies. The instance of the problem being a pseudo-Boolean function assigning real-valued cluster scores to node subsets, modularity maximization is employed to exemplify a so-called quadratic form, in that the scores of singletons and pairs also fully determine the scores of larger clusters, while the resulting multilinear polynomial potential function has degree 2. After considering further quadratic instances, different from modularity and obtained by interpreting network topology in alternative manners, a greedy local-search strategy for the continuous framework is analytically compared with an existing greedy agglomerative procedure for the discrete case. Overlapping is finally discussed in terms of multiple runs, i.e. several local searches with different initializations.Comment: 10 page

    Load Balancing Strategies for Parallel . . .

    No full text
    Highly resolved numerical solutions of partial differential equations are important in many areas of science and technology. Only adaptive mesh refinement methods reduce the necessary work sufficiently, allowing the calculation of realistic problems. Block-structure
    corecore