1,664 research outputs found
CHEOPS: The ESA Mission for Exo-Planets Characterization Ready for Launch
The European Space Agency (ESA) Science Programme Committee (SPC) selected CHEOPS (Characterizing Exoplanets Satellite) in October 2012 as the first Small-class mission (S1) within the Agency’s Scientific Programme. It is considered as a pilot case for implementing “small science missions” in the agency with the following requirements: science driven mission selected through an open Call; an implementation cycle, from the Call to launch, drastically shorter than for Medium-class (M) and Large-class (L) missions; a strict cost-cap to ESA, with possibly higher Member States involvement than for M or L missions.
The CHEOPS mission is devoted to the characterization of known exoplanets orbiting bright stars, achieved through the precise measurement of exoplanet radii using the technique of transit photometry. It was adopted for implementation in February 2014 as a partnership between the ESA Science Programme and Switzerland, with a number of other Member States delivering significant contributions to the instrument development and to operations.
The CHEOPS instrument is an optical Ritchey-Chrétien telescope with 300 mm effective aperture diameter and a large external baffle to minimize straylight. The compact CHEOPS spacecraft (approx. 300 kg, 1.5 m size), based on a flight-proven platform, will orbit the Earth in a dawn-dusk Sun Synchronous Orbit at 700 km altitude. CHEOPS completed the Preliminary Design Review at the end of September 2014, and passed the Critical Design Review in May 2016. In the course of 2017, flight platform and payload have been integrated and tested, and then followed by satellite level activities, targeting flight readiness by the end of year 2019. Implementation and validation of the ground segment, which is composed of the MOC (Mission Operations Centre), located in Torrejón (Madrid, Spain) and the SOC (Science Operations Centre), located at the University of Geneva (Switzerland) was achieved in parallel. CHEOPS will be launched as a secondary passenger on a Soyuz from Kourou by end of 2019.
The paper describes the latest CHEOPS development status, focusing on the activities for verification and validation of the satellite and the system at large, including the ground segment and the activities in preparation for S/C launch and its operations. Additional details can be found on the ESA and UBE websites referred in [8]
Fermi Large Area Telescope Observations of the Cygnus Loop Supernova Remnant
We present an analysis of the gamma-ray measurements by the Large Area
Telescope(LAT) onboard the \textit{Fermi Gamma-ray Space Telescope} in the
region of the supernova remnant(SNR) Cygnus Loop(G74.08.5). We detect
significant gamma-ray emission associated with the SNR in the energy band
0.2--100 GeV. The gamma-ray spectrum shows a break in the range 2--3 GeV. The
gamma-ray luminosity is erg s between 1--100
GeV, much lower than those of other GeV-emitting SNRs. The morphology is best
represented by a ring shape, with inner/outer radii 0.7
0.1 and 1.6 0.1. Given the association among
X-ray rims, \halpha filaments and gamma-ray emission, we argue that gamma rays
originate in interactions between particles accelerated in the SNR and
interstellar gas or radiation fields adjacent to the shock regions. The decay
of neutral pions produced in nucleon-nucleon interactions between accelerated
hadrons and interstellar gas provides a reasonable explanation for the
gamma-ray spectrum.Comment: accepted by ApJ, 34 pages, 6 figure
The Cherenkov Telescope Array Large Size Telescope
The two arrays of the Very High Energy gamma-ray observatory Cherenkov
Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with
a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA
to achieve a low-energy threshold of 20 GeV, which is critical for important
studies in astrophysics, astroparticle physics and cosmology. This work
presents the key specifications and performance of the current LST design in
the light of the CTA scientific objectives.Comment: 4 pages, 5 figures, In Proceedings of the 33rd International Cosmic
Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at
arXiv:1307.223
INFN Camera demonstrator for the Cherenkov Telescope Array
The Cherenkov Telescope Array is a world-wide project for a new generation of
ground-based Cherenkov telescopes of the Imaging class with the aim of
exploring the highest energy region of the electromagnetic spectrum. With two
planned arrays, one for each hemisphere, it will guarantee a good sky coverage
in the energy range from a few tens of GeV to hundreds of TeV, with improved
angular resolution and a sensitivity in the TeV energy region better by one
order of magnitude than the currently operating arrays. In order to cover this
wide energy range, three different telescope types are envisaged, with
different mirror sizes and focal plane features. In particular, for the highest
energies a possible design is a dual-mirror Schwarzschild-Couder optical
scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based
camera is being proposed as a solution to match the dimensions of the pixel
(angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made
by 9 Photo Sensor Modules (PSMs, 64 pixels each, with total coverage 1/4 of the
focal plane) equipped with FBK (Fondazione Bruno Kessler, Italy) Near
UltraViolet High Fill factor SiPMs and Front-End Electronics (FEE) based on a
Target 7 ASIC, a 16 channels fast sampler (up to 2GS/s) with deep buffer,
self-trigger and on-demand digitization capabilities specifically developed for
this purpose. The pixel dimensions of mm lead to a very compact
design with challenging problems of thermal dissipation. A modular structure,
made by copper frames hosting one PSM and the corresponding FEE, has been
conceived, with a water cooling system to keep the required working
temperature. The actual design, the adopted technical solutions and the
achieved results for this demonstrator are presented and discussed.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Dark Matter Annihilation around Intermediate Mass Black Holes: an update
The formation and evolution of Black Holes inevitably affects the
distribution of dark and baryonic matter in the neighborhood of the Black Hole.
These effects may be particularly relevant around Supermassive and Intermediate
Mass Black Holes (IMBHs), the formation of which can lead to large Dark Matter
overdensities, called {\em spikes} and {\em mini-spikes} respectively. Despite
being larger and more dense, spikes evolve at the very centers of galactic
halos, in regions where numerous dynamical effects tend to destroy them.
Mini-spikes may be more likely to survive, and they have been proposed as
worthwhile targets for indirect Dark Matter searches. We review here the
formation scenarios and the prospects for detection of mini-spikes, and we
present new estimates for the abundances of mini-spikes to illustrate the
sensitivity of such predictions to cosmological parameters and uncertainties
regarding the astrophysics of Black Hole formation at high redshift. We also
connect the IMBHs scenario to the recent measurements of cosmic-ray electron
and positron spectra by the PAMELA, ATIC, H.E.S.S., and Fermi collaborations.Comment: 12 pages, 7 figures. Invited contribution to NJP Focus Issue on "Dark
Matter and Particle Physics
Bereavement and palliative care: A public health perspective
In recent years there has been an increasing emphasis upon public health perspectives that place palliative care in the context of end-of-life services across whole populations. There is little corresponding public health interest in bereavement. Yet if we have to develop relevant, coherent, and comprehensive end-of-life care policies and practices, public health approaches to palliative care need to be accompanied by public health approaches to bereavement care. We argue here that palliative care services should match their commitment to providing a good death with a commitment to supporting good grief, and that this means investing their efforts principally in developing community capacity for bereavement care rather than seeking to deliver specialized bereavement services to relatives and friends of those who have received palliative care services
Constraints on the Cosmic-Ray Density Gradient beyond the Solar Circle from Fermi gamma-ray Observations of the Third Galactic Quadrant
We report an analysis of the interstellar -ray emission in the third
Galactic quadrant measured by the {Fermi} Large Area Telescope. The window
encompassing the Galactic plane from longitude 210\arcdeg to 250\arcdeg has
kinematically well-defined segments of the Local and the Perseus arms, suitable
to study the cosmic-ray densities across the outer Galaxy. We measure no large
gradient with Galactocentric distance of the -ray emissivities per
interstellar H atom over the regions sampled in this study. The gradient
depends, however, on the optical depth correction applied to derive the \HI\
column densities. No significant variations are found in the interstellar
spectra in the outer Galaxy, indicating similar shapes of the cosmic-ray
spectrum up to the Perseus arm for particles with GeV to tens of GeV energies.
The emissivity as a function of Galactocentric radius does not show a large
enhancement in the spiral arms with respect to the interarm region. The
measured emissivity gradient is flatter than expectations based on a cosmic-ray
propagation model using the radial distribution of supernova remnants and
uniform diffusion properties. In this context, observations require a larger
halo size and/or a flatter CR source distribution than usually assumed. The
molecular mass calibrating ratio, , is
found to be
in the Local-arm clouds and is not significantly sensitive to the choice of
\HI\ spin temperature. No significant variations are found for clouds in the
interarm region.Comment: Corresponding authors: I. A. Grenier ([email protected]); T.
Mizuno ([email protected]); L. Tibaldo
([email protected]) accepted for publication in Ap
Fermi LAT Observations of the Supernova Remnant W28 (G6.4-0.1)
We present detailed analysis of the two gamma-ray sources,1FGL J1801.3-2322c
and 1FGL J1800.5-2359c,that have been found toward the supernova remnant(SNR)
W28 with the Large Area Telescope(LAT) on board the Fermi Gamma-ray Space
Telescope.1FGL J1801.3-2322c is found to be an extended source within the
boundary of SNR W28,and to extensively overlap with the TeV gamma-ray source
HESS J1801-233,which is associated with a dense molecular cloud interacting
with the supernova remnant.The gamma-ray spectrum measured with LAT from
0.2--100 GeV can be described by a broken power-law function with a break of
~1GeV,and photon indices of 2.090.08(stat)0.28(sys) below the break
and 2.740.06(stat)0.09(sys) above the break.Given the clear
association between HESS J1801-233 and the shocked molecular cloud and a
smoothly connected spectrum in the GeV--TeV band,we consider the origin of the
gamma-ray emission in both GeV and TeV ranges to be the interaction between
particles accelerated in the SNR and the molecular cloud.The decay of neutral
pions produced in interactions between accelerated hadrons and dense molecular
gas provide a reasonable explanation for the broadband gamma-ray spectrum. 1FGL
J1800.5-2359c, located outside the southern boundary of SNR W28, cannot be
resolved.An upper limit on the size of the gamma-ray emission was estimated to
be ~16 using events above ~2GeV under the assumption of a circular shape
with uniform surface brightness. It appears to coincide with the TeV source
HESS J1800-240B,which is considered to be associated with a dense molecular
cloud that contains the ultra compact HII region W28A2(G5.89-0.39).We found no
significant gamma-ray emission in the LAT energy band at the positions of TeV
sources HESS J1800-230A and HESS J1800-230C.The LAT data for HESS J1800-230A
combined with the TeV data points indicate a spectral break between 10GeV and
100GeV.Comment: 23 pages, 6 figures. Accepted for publication in the Astrophysical
Journal. Corresponding authors: H. Katagiri, H. Tajima, T. Tanaka, and Y.
Uchiyam
- …